【題目】如圖,分別延長(zhǎng)ABCD的邊CD,AB到E,F,使DE=BF,連接EF,分別交AD,BC于G,H,連結(jié)CG,AH.

求證:CG∥AH.

【答案】證明:在ABCD中,
AB∥CD,AD∥CB ,AD=CB,
∴∠E=∠F,∠EDG=∠DCH=∠FBH,
DE=BF ,
∴△EGD≌△FHB(AAS) ,
∴DG=BH,
∴AG=HC ,
又∵AD∥CB,
∴四邊形AGCH為平行四邊形,
∴AH∥CG.
【解析】方法不唯一,如:證明四邊形AGCH為平行四邊形,可通過證明△EGD≌△FHB,已知DE=BF,再根據(jù)ABCD得出兩組角相等即可證明△EGD≌△FHB,即可求證AH∥CG.
【考點(diǎn)精析】利用平行四邊形的判定與性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知若一直線過平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師在計(jì)算學(xué)期平均分的時(shí)候按照如下標(biāo)準(zhǔn),作業(yè)占10%,測(cè)驗(yàn)占20%,期中考試占30%,期末考試占40%,小麗的成績(jī)?nèi)绫硭,則小麗的平均分是________分.

學(xué)生

作業(yè)

測(cè)驗(yàn)

期中考試

期未考試

小麗

80

75

70

90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,⊙O的半徑為r(r>0),若點(diǎn)P′在射線OP上,滿足OP′OP=,則稱點(diǎn)P′是點(diǎn)P關(guān)于⊙O的“反演點(diǎn)”.

如圖2,⊙O的半徑為4,點(diǎn)B在⊙O上,∠BOA=60°,OA=8,若點(diǎn)A′,B′分別是點(diǎn)A,B關(guān)于⊙O的反演點(diǎn),求A′B′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀填空:請(qǐng)你閱讀芳芳的說理過程并填出理由:
(1)如圖1,已知AB∥CD.
求證:∠BAE+∠DCE=∠AEC.
理由:作EF∥AB,則有EF∥CD(
∴∠1=∠BAE,∠2=∠DCE()
∴∠AEC=∠1+∠2=∠BAE+∠DCE()
思維拓展:

(2)如圖2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直線交于點(diǎn)E,若∠FAE=m°,∠ABC=n°,求∠BED的度數(shù).(用含m、n的式子表示)

(3)將圖2中的線段BC沿DC方向平移,使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,得到圖3,直接寫出∠BED的度數(shù)是(用含m、n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面文字:
對(duì)于(﹣5 )+(﹣9 )+17 +(﹣3
可以如下計(jì)算:
原式=[(﹣5)+(﹣ )]+[(﹣9)+(﹣ )]+(17+ )+[(﹣3)+(﹣ )]
=[(一5)+(﹣9)+17+(一3)]+[(﹣ )+(﹣ )+ +(﹣ )]
=0+(﹣1
=﹣1
上面這種方法叫拆項(xiàng)法,你看懂了嗎?
仿照上面的方法,請(qǐng)你計(jì)算:(﹣2000 )+(﹣1999 )+4000 +(﹣1 ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用四個(gè)螺絲將四條不可彎曲的木條圍成一個(gè)木框,不計(jì)螺絲大小,其中相鄰兩螺絲的距離依次為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時(shí)不破壞此木框,則任意兩個(gè)螺絲間的距離的最大值為(  )


A.6
B.7
C.8
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù):

阿基米德折弦定理

阿基米德(archimedes,公元前287﹣公元前212年,古希臘)是有史以來最偉大的數(shù)學(xué)家之一,他與牛頓、高斯并成為三大數(shù)學(xué)王子.

阿拉伯Al﹣Binmi(973﹣1050年)的譯文中保存了阿基米德折弦定理的內(nèi)容,蘇聯(lián)在1964年根據(jù)Al﹣Binmi譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德折弦定理.

阿基米德折弦定理:如圖1,AB和BC是O的兩條弦(即折線ABC是圓的一條折弦),BCAB,M是的中點(diǎn),則從M向BC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=AB+BD.下面是運(yùn)用“截長(zhǎng)法”證明CD=AB+BD的部分證明過程.證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.

M是的中點(diǎn),MA=MC.

任務(wù):

(1)請(qǐng)按照上面的證明思路,寫出該證明的剩余部分;

(2)填空:如圖3,已知等邊ABC內(nèi)接于O,AB=2,D為上一點(diǎn),ABD=45°,AEBD于點(diǎn)E,則BDC的周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)觀察圖象,直接寫出方程的解;

(3)求△AOB的面積;

(4)觀察圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x、y均為正整數(shù),且2x2y=128,則x+y的值為( 。

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

同步練習(xí)冊(cè)答案