【題目】1)如圖1中,ABC為正三角形,點EAB邊上任一點,以CE為邊作正DEC,連結(jié)AD.求的值.

2)如圖2中,ABC為等腰直角三角形,∠A90°,點E為腰AB上任意一點,以CE為斜邊作等腰直角CDE,連結(jié)AD.求的值;

3)如圖3中,ABC為任意等腰三角形,點E為腰AB上任意一點,以CE為底邊作等腰DEC,使DEC∽△ABC,并且BCAC.連結(jié)AD,直接寫出的值.

【答案】11;(2;(3

【解析】

(1)由三角形ABC與三角形CDE都為正三角形,得到AB=AC,CE=CD,以及內(nèi)角為60°,利用等式的性質(zhì)得到∠ECB=∠DCA,利用SAS得到三角形ECB與三角形DCA全等,利用全等三角形對應(yīng)邊相等得到BE=AD,即可求出所求之比;
(2)由三角形CDE與三角形ABC都為等腰直角三角形,利用等腰直角三角形的性質(zhì)得到CE=CD,BC=AC,以及銳角為45°,利用等式的性質(zhì)得到∠ECB=∠DCA,利用兩邊對應(yīng)成比例且夾角相等的三角形相似得到三角形ECB與三角形DCA相似,利用相似三角形對應(yīng)邊成比例即可求出所求之比;
(3)仿照前兩問,以此類推得到一般性規(guī)律,求出所求之比即可.

解:(1)∵△ABC和△CDE都是正三角形,

∴∠B=∠ACB=∠DCE=60°,AB=AC,CE=DC,

∵∠ECB=∠ACB﹣∠ACE=60°﹣∠ACE,

∠DCA=∠DCE﹣∠ACE=60°﹣∠ACE,

∴∠ECB=∠DCA,

在△ECB和△DCA中,

,

∴△ECB≌△DCA(SAS),

∴BE=AD,

=1;

(2)∵等腰Rt△ABC和等腰Rt△CDE中,

∴∠B=∠ACB=∠DCE=45°,CE=DC,BC=AC,

,

∵∠ECB=∠ACB﹣∠ACE=45°﹣∠ACE,

∠ACD=∠DCE﹣∠ACE=45°﹣∠ACE,

∴∠ECB=∠DCA,

∴△ECB∽△DCA,

;

(3)依此類推,當(dāng)BC=AC時,,理由為:

∵等腰△ABC和等腰△CDE中,

∴∠B=∠ACB=∠DCE,CE=DC,BC=AC,

,

∵∠ECB=∠ACB﹣∠ACE,∠ACD=∠DCE﹣∠ACE,

∴∠ECB=∠DCA,

∴△ECB∽△DCA,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準(zhǔn)備在一個廣場上種植甲、乙兩種花卉,經(jīng)市場調(diào)查,甲種花卉的種植費用y(元)與種植面積xm2)之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費用為每平方米100元.

1)直接寫出當(dāng)0≤x≤300x300時,yx的函數(shù)關(guān)系式;

2)廣場上甲、乙兩種花卉的種植面積共1200m2,若甲種花卉的種植面積不少于200m2,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費用最少?最少總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在星期一的第八節(jié)課,我校體育老師隨機抽取了九年級的總分學(xué)生進行體育中考的模擬測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.

 等級

 得分x(分)

 頻數(shù)(人)

 A

 95<x≤100

 4

 B

 90<x≤95

 m

 C

 85<x≤90

 n

 D

 80<x≤85

 24

 E

 75<x≤80

 8

 F

 70<x≤75

 4

請你根據(jù)圖表中的信息完成下列問題:

1)本次抽樣調(diào)查的樣本容量是   .其中m=   ,n=   

2)扇形統(tǒng)計圖中,求E等級對應(yīng)扇形的圓心角α的度數(shù);

3)我校九年級共有700名學(xué)生,估計體育測試成績在A、B兩個等級的人數(shù)共有多少人?

4)我校決定從本次抽取的A等級學(xué)生(記為甲、乙、丙、丁)中,隨機選擇2名成為學(xué)校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,O為坐標(biāo)原點,四邊形OABC是長方形,點A、C、D的坐標(biāo)分別為A(9,0)、C(04),D(5,0),點P從點O出發(fā),以每秒1個單位長度的速度沿OCBA運動,點P的運動時間為t秒.則當(dāng)t____秒時,△ODP是腰長為5的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點,∠ADE=∠C.

(1)求證:△BDE∽△CAD;

(2)若CD=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB6,AD8,點E是邊AD上一點,EMBCAB于點M,點N在射線MB上,且AEAMAN的比例中項.

1)如圖1,求證:∠ANE=∠DCE;

2)如圖2,當(dāng)點N在線段MB之間,聯(lián)結(jié)AC,且ACNE互相垂直,求MN的長;

3)連接AC,如果AEC與以點EM、N為頂點所組成的三角形相似,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某消防隊在一居民樓前進行演習(xí),消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者.在消防車上點A處測得點B和點C的仰角分別是45°65°,點A距地面2.5米,點B距地面10.5.為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在實施棚戶區(qū)改造工程中,我市計劃推出、兩種新戶型.根據(jù)預(yù)算,建成10種戶型和30種戶型住房共需資金2790萬元,建成30種戶型和10種戶型住房共需資金2130萬元.

1)在危舊房改造中建成一套種戶型和一套種戶型住房所需資金分別是多少萬元?

2)河西區(qū)有200套住房需要改造,改造資金由國家危舊房補貼和地方財政共同承擔(dān),若國家危舊房補貼撥付的改造資金不超過6560萬元,地方財政投入額資金不少于5050萬元,其中國家危舊房補貼投入到、兩種戶型的改造資金分別為每套27萬元和40萬元

①請你設(shè)計出改造方案:

②設(shè)這項改造工程總投入資金萬元,建成種戶型套,寫出的關(guān)系式,并求出最少總投入.

查看答案和解析>>

同步練習(xí)冊答案