【題目】已知二次函數(shù),與軸的交點(diǎn)為,與軸交于、兩點(diǎn).(點(diǎn)在點(diǎn)的右側(cè))
(1)當(dāng),求的值;
(2)點(diǎn)在二次函數(shù)的圖像上,設(shè)直線與軸交于點(diǎn),求的值.
【答案】(1),;(2)
【解析】
(1)解一元二次方程即可;
(2)先求出點(diǎn)B、P、M的坐標(biāo),根據(jù)坐標(biāo)求出直線MP的解析式,得到點(diǎn)C的坐標(biāo).
(1)由題意得:,
∴(x-5)(x+1)=0,
∴ ,;
(2)由(1)可得與x軸的交點(diǎn)B(5,0),
∵二次函數(shù),與軸的交點(diǎn)為,
∴P(0,-5),
∵點(diǎn)在二次函數(shù)的圖像上,
∴m=,
∴ M(6,7),
設(shè)直線MP的解析式為y=kx+b,
∴,解得,
∴直線MP的解析式為y=2x-5,
當(dāng)y=0時(shí),x=,
∴直線與軸交于點(diǎn)的坐標(biāo)是(,0),
過(guò)點(diǎn)M作MH⊥x軸,則H(6,0),
∴MH=7,HC=6-=,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2)、B(0,4) 、C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,4) ,畫出平移后對(duì)應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(3)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD的邊長(zhǎng)是4,∠DAB=60,點(diǎn)M,N分別在邊AD,AB上,MN⊥AC,垂足為P,把△AMN沿MN折疊得到△A'MN,若△A'DC恰為等腰三角形,則AP的長(zhǎng)為_____。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對(duì)稱軸是直線x=﹣1,則下列結(jié)論正確的是( 。
A.abc<0B.2a﹣b=0C.b2﹣4ac<0D.a+b+c<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5交y軸于點(diǎn)A,交x軸于點(diǎn)B(﹣5,0)和點(diǎn)C(1,0),過(guò)點(diǎn)A作AD∥x軸交拋物線于點(diǎn)D.
(1)求此拋物線的表達(dá)式;
(2)點(diǎn)E是拋物線上一點(diǎn),且點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)在直線AD上,求△EAD的面積;
(3)若點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),△ABP的面積最大,求出此時(shí)點(diǎn)P的坐標(biāo)和△ABP的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園劃船項(xiàng)目收費(fèi)標(biāo)準(zhǔn)如下:某班18名同學(xué)一起去該公園劃船,若每人劃船的時(shí)間均為1小時(shí),則租船的總費(fèi)用最低為_____元.
船型 | 兩人船(限乘兩 人) | 四人船(限乘四 人) | 六人船(限乘六 人) | 八人船(限乘八 人) |
每船租金(元/小時(shí)) | 50 | 80 | 100 | 120 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上一點(diǎn),∠CAB=30°,D是直徑AB上一動(dòng)點(diǎn),連接CD并過(guò)點(diǎn)D作CD的垂線,與圓O的其中一個(gè)交點(diǎn)記為點(diǎn)E(點(diǎn)E位于直線CD上方或左側(cè)),連接EC.已知AB=6cm,設(shè)A、D兩點(diǎn)間的距離為xcm,C、D兩點(diǎn)間的距離為y1cm,E、C兩點(diǎn)間的距離為y2cm,小雪根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小雪的探究過(guò)程:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 5.2 | 4.4 | 3.6 | 3.0 | 2.7 | 2.7 |
|
y2/cm | 5.2 | 4.6 | 4.2 |
| 4.8 | 5.6 | 6.0 |
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、面圖、測(cè)量,分別得到了y1,y2與x的幾組對(duì)應(yīng)值,請(qǐng)將表格補(bǔ)充完整:(保留一位小數(shù))
(2)在同一平面直角坐標(biāo)系xOy中,y2的圖象如圖所示,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y1),(x,y2),并畫出函數(shù)y1的圖象;
(3)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)∠ECD=60°時(shí),AD的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)統(tǒng)計(jì)了每個(gè)營(yíng)業(yè)員在某月的銷售額,繪制了如下統(tǒng)計(jì)圖.
解答下列問(wèn)題:
(1)設(shè)營(yíng)業(yè)員的月銷售額為x(單位:萬(wàn)元).商場(chǎng)規(guī)定:當(dāng)x<15時(shí)為不稱職,當(dāng)15≤x<20時(shí)為基本稱職,當(dāng)20≤x<25時(shí)為稱職,當(dāng)x≥25時(shí)為優(yōu)秀.試求出基本稱職、稱職兩個(gè)層次營(yíng)業(yè)員人數(shù)所占百分比,并補(bǔ)全扇形圖;
(2)根據(jù)(1)中規(guī)定,所有稱職和優(yōu)秀的營(yíng)業(yè)員月銷售額的中位數(shù)為 ,眾數(shù)為 ;
(3)為了調(diào)動(dòng)營(yíng)業(yè)員的積極性,商場(chǎng)制定月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過(guò)這個(gè)標(biāo)準(zhǔn)的受到獎(jiǎng)勵(lì).如果要使稱職和優(yōu)秀的營(yíng)業(yè)員半數(shù)左右能獲獎(jiǎng),獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬(wàn)元?簡(jiǎn)述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形中,點(diǎn)分別在邊上,點(diǎn)分別在邊上,與交于點(diǎn),記.
(1)如圖1,當(dāng)時(shí),若,求的值;
(2)如圖2,當(dāng)時(shí),求的最大值和最小值;
(3)若的值為3,當(dāng)與重合且為直角三角形時(shí),直接寫出的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com