(2013•太原)如圖,在△ABC中,AB=AC,D是BA延長線上的一點,點E是AC的中點.
(1)實踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標明相應字母(保留作圖痕跡,不寫作法).
①作∠DAC的平分線AM. ②連接BE并延長交AM于點F.
(2)猜想與證明:試猜想AF與BC有怎樣的位置關(guān)系和數(shù)量關(guān)系,并說明理由.
分析:(1)根據(jù)題意畫出圖形即可;
(2)首先根據(jù)等腰三角形的性質(zhì)與三角形內(nèi)角與外角的性質(zhì)證明∠C=∠FAC,進而可得AF∥BC;然后再證明△AEF≌△CEB,即可得到AF=BC.
解答:解:(1)如圖所示;

(2)AF∥BC,且AF=BC,
理由如下:∵AB=AC,
∴∠ABC=∠C,
∴∠DAC=∠ABC+∠C=2∠C,
由作圖可得∠DAC=2∠FAC,
∴∠C=∠FAC,
∴AF∥BC,
∵E為AC中點,
∴AE=EC,
在△AEF和△CEB中
∠FAE=∠C
AE=CE
∠AEF=∠BEC
,
∴△AEF≌△CEB(ASA).
∴AF=BC.
點評:此題主要考查了作圖,以及平行線的判定,全等三角形的判定,關(guān)鍵是證明∠C=∠FAC.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•太原)如圖,矩形ABCD在第一象限,AB在x軸正半軸上,AB=3,BC=1,直線y=
1
2
x-1經(jīng)過點C交x軸于點E,雙曲線y=
k
x
經(jīng)過點D,則k的值為
1
1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•太原)如圖,在矩形紙片ABCD中,AB=12,BC=5,點E在AB上,將△DAE沿DE折疊,使點A落在對角線BD上的點A′處,則AE的長為
10
3
10
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•太原)如圖是我省某地一座拋物線形拱橋,橋拱在豎直平面內(nèi),與水平橋面相交于A,B兩點,拱橋最高點C到AB的距離為9m,AB=36m,D,E為拱橋底部的兩點,且DE∥AB,點E到直線AB的距離為7m,則DE的長為
48
48
m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•太原)如圖,AB為⊙O的直徑,點C在⊙O上,點P是直徑AB上的一點(不與A重合),過點P作AB的垂線交BC于點Q.
(1)在線段PQ上取一點D,使DQ=DC,連接DC,試判斷CD與⊙O的位置關(guān)系,并說明理由.
(2)若cosB=
35
,BP=6,AP=1,求QC的長.

查看答案和解析>>

同步練習冊答案