【題目】如圖,點(diǎn)A在函數(shù)圖像上,過(guò)點(diǎn)Ax軸和y軸的平行線分別交函數(shù)圖像于點(diǎn)B、C,直線BC與坐標(biāo)軸的交點(diǎn)為DE.當(dāng)點(diǎn)A在函數(shù)圖像上運(yùn)動(dòng)時(shí),

1)設(shè)點(diǎn)A橫坐標(biāo)為a,則點(diǎn)B的坐標(biāo)為 ,點(diǎn)C的坐標(biāo)為 (用含a的字母表示);

2ABC的面積是否發(fā)生變化?若不變,求出ABC的面積,若變化,請(qǐng)說(shuō)明理由;

【答案】(1);(2)見(jiàn)解析.

【解析】

(1)由條件可先求得A點(diǎn)坐標(biāo),從而可求得B點(diǎn)縱坐標(biāo),再代入 可求得B點(diǎn)與C點(diǎn)的坐標(biāo);
(2)可設(shè)出A點(diǎn)坐標(biāo),從而可表示出C、B的坐標(biāo),則可表示出ABAC的長(zhǎng),可求得的面積;

解:(1)∵點(diǎn)A橫坐標(biāo)為a,點(diǎn)A在函數(shù)(x>0)圖象上,

∴點(diǎn)A縱坐標(biāo)為

,軸,

∴點(diǎn)B的縱坐標(biāo)為:,點(diǎn)C的橫坐標(biāo)a,

∴點(diǎn)B橫坐標(biāo)為:;點(diǎn)C的縱坐標(biāo)為:

B點(diǎn)坐標(biāo)為;

故答案為:;

(2),,

,不發(fā)生改變;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PAPB分別切圓OA、B兩點(diǎn),C為劣弧AB上一點(diǎn),∠APB=40°,則∠ACB= ).

A.70°B.80°C.110°D.140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y1=的圖象與一次函數(shù)y2=的圖象交于點(diǎn)A,B,點(diǎn)B的橫坐標(biāo)實(shí)數(shù)4,點(diǎn)P(1,m)在反比例函數(shù)y1=的圖象上.

(1)求反比例函數(shù)的表達(dá)式;

(2)觀察圖象回答:當(dāng)x為何范圍時(shí),y1>y2

(3)求PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程(k-1)x2+2kx+2=0

(1求證:無(wú)論k為何值,方程總有實(shí)數(shù)根。

(2)設(shè)x1,x2是方程(k-1)x2+2kx+2=0的兩個(gè)根,記S=++ x1+x2,S的值能為2嗎?若能,求出此時(shí)k的值。若不能,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,EFBC上兩點(diǎn),且BE=CFAF=DE

求證:(1△ABF≌△DCE;

  1. 四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l與O相離,OAl于點(diǎn)A,交O于點(diǎn)P,點(diǎn)B是O上一點(diǎn),連接BP并延長(zhǎng),交直線l于點(diǎn)C,使得AB=AC.

(1)求證:AB是O的切線;

(2)若PC=,OA=3,求O的半徑和線段PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)《九章算術(shù)》記載:“今有山居木西,不知其高.山去五十三里,木高九丈五尺.人立木東三里,望木末適與山峰斜平.人目高七尺.問(wèn)山高幾何?”譯文如下:如圖,今有山位于樹(shù)的西面.山高為未知數(shù),山與樹(shù)相距53里,樹(shù)高95.人站在離樹(shù)3里的地方,觀察到樹(shù)梢恰好與山峰處在同一條直線上,人眼離地7.則山高的長(zhǎng)為(結(jié)果保留到整數(shù),1=10尺)( )

A.162B.163C.164D.165

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)今,越來(lái)越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說(shuō),該小說(shuō)銷量也急劇上升.書(shū)店為滿足廣大顧客需求,訂購(gòu)該科幻小說(shuō)若干本,每本進(jìn)價(jià)為20元.根據(jù)以往經(jīng)驗(yàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量是250本;銷售單價(jià)每上漲1元,每天的銷售量就減少10本,書(shū)店要求每本書(shū)的利潤(rùn)不低于10元且不高于18元.

1)直接寫出書(shū)店銷售該科幻小說(shuō)時(shí)每天的銷售量(本)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.

2)書(shū)店決定每銷售1本該科幻小說(shuō),就捐贈(zèng)元給困難職工,每天扣除捐贈(zèng)后可獲得最大利潤(rùn)為1960元,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案