【題目】某校為了了解學生課外閱讀情況,隨機抽查了50名學生,統(tǒng)計他們平均每天課外閱讀時間(t小時).根據(jù)t的長短分為A,BC,D四類,下面是根據(jù)所抽查的人數(shù)繪制的兩幅不完整的統(tǒng)計圖表.請根據(jù)圖中提供的信息,解答下面的問題:

1)求表格中的a的值,并在圖中補全條形統(tǒng)計圖;

2)該,F(xiàn)有1300名學生,請你估計該校共有多少名學生課外閱讀時間不少于1小時?50名學生平均每天課外閱讀時間統(tǒng)計表

類別

時間t(小時)

人數(shù)

A

t0.5

10

B

0.5t1

20

C

1t1.5

15

D

t1.5

a

【答案】1a值為5,見解析;(2)共有520名學生課外閱讀時間不少于1小時.

【解析】

1)用抽查的學生的總?cè)藬?shù)減去AB,C三類的人數(shù)即為D類的人數(shù)也就是a的值,并補全統(tǒng)計圖;
2)先求出課外閱讀時間不少于1小時的學生占的比例,再乘以1300即可.

解:(150-10-20-15=5(名),
a的值為5,條形統(tǒng)計圖如下:

21300×=520(名)

答:共有520名學生課外閱讀時間不少于1小時

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為25,內(nèi)部有6個全等的正方形,小正方形的頂點E、F、G、H分別落在邊AD、AB、BC、CD上,則每個小正方形的邊長為( )

A.6 B.5 C.2 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有兩條邊長的比值為的直角三角形叫潛力三角形.如圖,在ABC中,∠B=90°,DAB的中點,ECD的中點,DFAEBC于點F.

(1)設(shè)潛力三角形較短直角邊長為a,斜邊長為c,請你直接寫出的值為   

(2)若∠AED=DCB,求證:BDF潛力三角形”;

(3)若BDF潛力三角形,且BF=1,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點E是邊AC上一點,線段BE垂直于∠BAC的平分線于點D,點M為邊BC的中點,連接DM

(1)求證: DMCE

(2)AD6,BD8,DM2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】工匠制作某種金屬工具要進行材料煅燒和鍛造兩個工序,即需要將材料燒到800℃,然后停止煅燒進行鍛造操作,經(jīng)過8min時,材料溫度降為600℃.煅燒時溫度y)與時間xmin)成一次函數(shù)關(guān)系;鍛造時,溫度y)與時間xmin)成反比例函數(shù)關(guān)系(如圖).已知該材料初始溫度是32℃

1)分別求出材料煅燒和鍛造時yx的函數(shù)關(guān)系式,并且寫出自變量x的取值范圍;

2)根據(jù)工藝要求,當材料溫度低于480℃時,須停止操作.那么鍛造的操作時間有多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游,不同租賃公司的租車費用(單位:元)與時間(單位:)之間的關(guān)系如圖所示.

根據(jù)以上信息,解答下列問題:

1)設(shè)租車時間為時,租用甲公司的車所需費用為元,租用乙公司的車所需費用為元,分別求出關(guān)于的函數(shù)解析式;

2)請你幫助小明計算并選擇哪個出游方案合算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某大樓的頂部有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1,AB=10,AE=15(i=1是指坡面的鉛直高度BH與水平長度AH的比).

(1)求點B距水平面AE的高度BH;

(2)求廣告牌CD的高度.

(測角器的高度忽略不計,結(jié)果精確到0.1.參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半徑為2的扇形AOB中,∠AOB=90°,點C是弧AB上的一個動點(不與點A,B重合),OD⊥BC,OE⊥AC,垂足分別為D,E.

(1)BC=1時,求線段OD的長;

(2)在△DOE中是否存在長度保持不變的邊?如果存在,請指出并求其長度,如果不存在,請說明理由;

(3)設(shè)BD=x,△DOE的面積為y,求y關(guān)于x的函數(shù)表達式,并寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),ABC的頂點均在格點上,請在所給的直角坐標系中解答下列問題:

作出△繞點A逆時針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點O成中心對稱的△A1B2C2

(2)請直接寫出以A1、B2C2為頂點的平行四邊形的第四個頂點D的坐標 .(寫出一個即可)

查看答案和解析>>

同步練習冊答案