【題目】“五·一”期間,九年一班同學(xué)從學(xué)校出發(fā),去距學(xué)校6千米的本溪水洞游玩,同學(xué)們分為步行和騎自行車兩組,在去水洞的全過(guò)程中,騎自行車的同學(xué)比步行的同學(xué)少用40分鐘,已知騎自行車的速度是步行速度的3倍.
(1)求步行同學(xué)每分鐘走多少千米?
(2)如圖是兩組同學(xué)前往水洞時(shí)的路程y(千米)與時(shí)間x(分鐘)的函數(shù)圖象.
完成下列填空:
①表示騎車同學(xué)的函數(shù)圖象是線段__________;
②已知A點(diǎn)坐標(biāo)(30,0),則B點(diǎn)的坐標(biāo)為(________).
【答案】AM(50,0)
【解析】
(1)關(guān)鍵描述語(yǔ):“騎自行車的同學(xué)比步行的同學(xué)少用40分鐘”;等量關(guān)系為:步行的同學(xué)所用的時(shí)間=騎自行車的同學(xué)所用的時(shí)間+40;
(2)①函數(shù)圖象的斜率為騎自行車和步行時(shí)的速率,騎自行車的速率快,故斜率大,故AM線段為騎車同學(xué)的函數(shù)圖象;
②根據(jù)題中所的條件,可將線段AM的函數(shù)關(guān)系式表示出來(lái),從而可將可將B點(diǎn)的坐標(biāo)求出.
(1)設(shè)步行同學(xué)每分鐘走千米,則騎自行車同學(xué)每分鐘走千米,
根據(jù)題意,得:,
,
經(jīng)檢驗(yàn),是原方程的解,
答:步行同學(xué)每分鐘走千米;
(2)①騎車同學(xué)的速度快,即斜率大,故為線段AM;
②由(1)知,線段AM的斜率為:3x=,
設(shè)一次函數(shù)關(guān)系式為:y=x+b
將點(diǎn)A的坐標(biāo)(30,0)代入可得:b=9,
∴y=x9.
當(dāng)y=6時(shí),x=50.
故點(diǎn)B的坐標(biāo)為(50,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠CEF的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F,切點(diǎn)為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過(guò)點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過(guò)A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知:點(diǎn)A(0,0),B(,0),C(0,1)在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1,第2個(gè)△B1A2B2,第3個(gè)△B2A3B3,…,則第個(gè)等邊三角形的邊長(zhǎng)等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當(dāng)點(diǎn)在線段BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)在直線BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1) 如圖1,在正方形ABCD中,點(diǎn)E,F分別在邊BC,CD上,AE,BF交于點(diǎn)O,∠AOF=90°.求證:BE=CF.
(2) 如圖2,在正方形ABCD中,點(diǎn)E,H,F,G分別在邊AB,BC,CD,DA上,EF,GH交于點(diǎn)O,∠FOH=90°, EF=4.求GH的長(zhǎng).
(3) 已知點(diǎn)E,H,F,G分別在矩形ABCD的邊AB,BC,CD,DA上,EF,GH交于點(diǎn)O,∠FOH=90°,EF=4. 直接寫出下列兩題的答案:
①如圖3,矩形ABCD由2個(gè)全等的正方形組成,求GH的長(zhǎng);
②如圖4,矩形ABCD由n個(gè)全等的正方形組成,求GH的長(zhǎng)(用n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一棵樹CD的10m高處的B點(diǎn)有兩只猴子,它們都要到A處池塘邊喝水,其中一只猴子沿樹爬下走到離樹20m處的池塘A處,另一只猴子爬到樹頂D后直線躍入池塘的A處.如果兩只猴子所經(jīng)過(guò)的路程相等,試問這棵樹多高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,、分別垂直平分和,交于、兩點(diǎn),與相交于點(diǎn).
(1)若的周長(zhǎng)為15 cm,求的長(zhǎng).
(2)若,求的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com