【題目】如圖,ABC在直角坐標(biāo)系中.

1)寫出點(diǎn)A,點(diǎn)B的坐標(biāo)A    ,    ),B    ,    );

2SABC=    ;

3)若把ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得A1B1C1,在圖中畫出A1B1C1的位置,并寫出點(diǎn)A1、B1C1的坐標(biāo).

【答案】1A(-1,-1),B(4,2);(2SABC=7;(3A1(11)、B1(64)、C1(3,5).

【解析】

1)根據(jù)各點(diǎn)在坐標(biāo)系中的位置寫出各點(diǎn)坐標(biāo)即可;

2)利用矩形的面積減去三個(gè)頂點(diǎn)上三角形的面積即可;

3)根據(jù)圖形平移的性質(zhì)畫出△ABC′,并寫出點(diǎn)A′、B′、C′的坐標(biāo)即可.

1)由圖可知,A1,1),B4,2

故答案為:1;14;2

2SABC4×5×2×4×1×3×3×52047;

故答案為:7

3)如圖,△A1B1C1即為所求,A11,1),B16,4),C135).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣x+a(a>0),當(dāng)自變量x取m時(shí),其相應(yīng)的函數(shù)值小于0,那么下列結(jié)論中正確的是( )
A.m﹣1>0
B.m﹣1<0
C.m﹣1=0
D.m﹣1與0的大小關(guān)系不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司投資1200萬元購買了一條新生產(chǎn)線生產(chǎn)新產(chǎn)品.根據(jù)市場(chǎng)調(diào)研,生產(chǎn)每件產(chǎn)品需要成本50元,該產(chǎn)品進(jìn)入市場(chǎng)后不得低于80元/件且不得超過160元/件,該產(chǎn)品銷售量y(萬件)與產(chǎn)品售價(jià)x(元)之間的關(guān)系如圖所示.

(1)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)第一年公司是盈利還是虧損?求出當(dāng)盈利最大或虧損最小時(shí)的產(chǎn)品售價(jià);
(3)在(2)的前提下,即在第一年盈利最大或者虧損最小時(shí),公司第二年重新確定產(chǎn)品售價(jià),能否使前兩年盈利總額達(dá)790萬元?若能,求出第二年產(chǎn)品售價(jià);若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,與AC交于點(diǎn)D,點(diǎn)O是AB上一點(diǎn),⊙O過B、D兩點(diǎn),且分別交AB、BC于點(diǎn)E、F.

(1)求證:AC是⊙O的切線;
(2)已知AB=10,BC=6,求⊙O的半徑r

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的面積法給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用面積法來證明,下面是小聰利用圖1證明勾股定理的過程:

將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.

證明:連結(jié)DB,過點(diǎn)DBC邊上的高DF,則DF=EC=b﹣a,

∵S四邊形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四邊形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

請(qǐng)參照上述證法,利用圖2完成下面的證明.

將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:數(shù)學(xué)活動(dòng)課上,樂老師給出如下定義:有一組對(duì)邊相等而另一組對(duì)邊不相等的凸四邊形叫做對(duì)等四邊形.
理解:
(1)如圖1,已知A、B、C在格點(diǎn)(小正方形的頂點(diǎn))上,請(qǐng)?jiān)诜礁駡D中畫出以格點(diǎn)為頂點(diǎn),AB、BC為邊的兩個(gè)對(duì)等四邊形ABCD;

(2)如圖2,在圓內(nèi)接四邊形ABCD中,AB是⊙O的直徑,AC=BD.求證:四邊形ABCD是對(duì)等四邊形;

(3)如圖3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC= ,點(diǎn)A在BP邊上,且AB=13.用圓規(guī)在PC上找到符合條件的點(diǎn)D,使四邊形ABCD為對(duì)等四邊形,并求出CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中, ,點(diǎn)DBC所在的直線上,點(diǎn)E在射線AC上,且,連接DE

(1)如圖①,若, ,求的度數(shù);

(2)如圖②,若, ,求的度數(shù);

(3)當(dāng)點(diǎn)D在直線BC上(不與點(diǎn)B、C重合)運(yùn)動(dòng)時(shí),試探究的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列多項(xiàng)式的乘法中,可以用平方差公式計(jì)算的有(

A.x+)(﹣xB.(﹣2+m)(﹣m2

C.(﹣a+b)(abD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)中學(xué)生一周課外閱讀時(shí)長(zhǎng)的情況,隨機(jī)抽取部分中學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,將閱讀時(shí)長(zhǎng)分為四類:2小時(shí)以內(nèi),24小時(shí)(2小時(shí)),46小時(shí)(4小時(shí)),6小時(shí)及以上,并繪制了如圖所示尚不完整的統(tǒng)計(jì)圖.

(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)長(zhǎng)“46小時(shí)對(duì)應(yīng)的圓心角度數(shù)為   °

(3)若該地區(qū)共有20000名中學(xué)生,估計(jì)該地區(qū)中學(xué)生一周課外閱讀時(shí)長(zhǎng)不少于4小時(shí)的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案