閱讀下面材料,解答問題:
材料:在解方程x4-2x2-8=0時(shí),我們可以將x2看成一個(gè)整體,然后設(shè)x2=y,則x4=y2.原方程可化為y2-2y-8=0,解得y=4或y=-2
當(dāng)y=4時(shí),x2=4,所以x=2或x=-2
當(dāng)y=-2時(shí),x2=-2,此方程無解
所以原方程的解為x1=2,x2=-2
問題:請參照上述解法解方程(x2-1)2-5(x2-1)+4=0.
分析:先設(shè)x2-1=t,則方程即可變形為t2-5t+4=0,解方程即可求得t即x2-1的值.
解答:解:設(shè)x2-1=t,原方程可化為t2-5t+4=0,即(t-1)(t-4)=0,
解得,t=1或t=4.
當(dāng)t=1時(shí),x2-1=1,解得,x=±
2
;
當(dāng)t=4時(shí),x2-1=4,解得x=±
5

所以原方程的解是:x1=
2
,x2=-
2
,x3=
5
,x4=-
5
點(diǎn)評:本題主要考查了換元法,即把某個(gè)式子看作一個(gè)整體,用一個(gè)字母去代替它,實(shí)行等量替換.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面材料:解答問題
為解方程(x2-1)2-5(x2-1)+4=0,我們可以將(x2-1)看作一個(gè)整體,然后設(shè)x2-1=y,那么原方程可化為y2-5y+4=0,解得y1=1,y2=4.當(dāng)y=1時(shí),x2-1=1,∴x2=2,∴x=±
2
;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±
5
,故原方程的解為x1=
2
,x2=-
2
,x3=
5
,x4=-
5

上述解題方法叫做換元法;請利用換元法解方程.(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個(gè)整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當(dāng)y=1時(shí),x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆福建省長汀縣城區(qū)五校九年級第一次月考聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:解答題

閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個(gè)整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,
解得y1=1,y2=4.當(dāng)y=1時(shí),x2-1=1,
∴x2=2,
∴x=±;當(dāng)y=4時(shí),x2-1=4,
∴x2=5,
∴x=±,
故原方程的解為  x1,x2=-,x3,x4=-
上述解題方法叫做換元法;
請利用換元法解方程:(x 2-x)2 - 4 (x 2-x)-12=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆山東省無棣縣十校聯(lián)考九年級上學(xué)期期中數(shù)學(xué)試卷 題型:解答題

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個(gè)整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當(dāng)y=1時(shí),x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0  

 

查看答案和解析>>

同步練習(xí)冊答案