【題目】如圖,AB是⊙O的直徑,C,G是⊙O上兩點(diǎn),且,過點(diǎn)C的直線CD⊥BG于點(diǎn)D,交BA的延長(zhǎng)線于點(diǎn)E,連接BC,交OD于點(diǎn)F.
(1)求證:CD是⊙O的切線;
(2)若,求證:AE=AO;
(3)連接 AD,在(2)的條件下,若CD ,求AD的長(zhǎng).
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)要證明CD是⊙O的切線,連接OC,只要證明∠OCE=90°即可,根據(jù)題目中的條件,可以證明OC∥BD,根據(jù)CD⊥BG于點(diǎn)D,從而可以證明結(jié)論成立;
(2)根據(jù)OC∥BD可得,,利用相似三角形的性質(zhì)求出,即可證明AE=AO;
(3)在(2)的條件下,根據(jù)含30度直角三角形的性質(zhì)求出半徑,然后作于點(diǎn),分別求出DM和AM,根據(jù)勾股定理可以求得AD的長(zhǎng).
解:(1)連接,
,,
,,
,
,
,
,
,
,
是的半徑,
是的切線;
(2)由(1)知,,
,,
,
,
,
,
,
,
,
,
設(shè),則,
,
,
,
;
(3)在(2)的條件下,,
,
,
,
,,
,,
,
,,
,
,
作于點(diǎn),
,
,,
,,
,
,
,
,,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是二次函數(shù)的的部分對(duì)應(yīng)值:
··· | ··· | ||||||||
··· | ··· |
則對(duì)于該函數(shù)的性質(zhì)的判斷:
①該二次函數(shù)有最小值;
②不等式的解集是或
③方程的實(shí)數(shù)根分別位于和之間;
④當(dāng)時(shí),函數(shù)值隨的增大而增大;
其中正確的是:
A.①②③B.②③C.①②D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備購(gòu)進(jìn)一批產(chǎn)品進(jìn)行銷售,該產(chǎn)品的進(jìn)貨單價(jià)為6元/個(gè).根據(jù)市場(chǎng)調(diào)查,該產(chǎn)品的日銷售量y(個(gè))與銷售單價(jià)x(元/個(gè))之間滿足一次函數(shù)關(guān)系.關(guān)于日銷售量y(個(gè))與銷售單價(jià)x(元/個(gè))的幾組數(shù)據(jù)如表:
x | 10 | 12 | 14 | 16 |
y | 300 | 240 | 180 | m |
(1)求出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍)及m的值.
(2)按照(1)中的銷售規(guī)律,當(dāng)銷售單價(jià)定為17.5元/個(gè)時(shí),日銷售量為 個(gè),此時(shí),獲得日銷售利潤(rùn)是 .
(3)為防范風(fēng)險(xiǎn),該公司將日進(jìn)貨成本控制在900(含900元)以內(nèi),按照(1)中的銷售規(guī)律,要使日銷售利潤(rùn)最大,則銷售單價(jià)應(yīng)定為多少?并求出此時(shí)的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是⊙O 外一點(diǎn),PA切⊙O于點(diǎn)A,AB是⊙O的直徑,連接OP,過點(diǎn)B作BC∥OP交⊙O于點(diǎn)C,連接AC交OP于點(diǎn)D.
(1)求證:PC是⊙O的切線;
(2)若PD=cm,AC=8cm,求圖中陰影部分的面積;
(3)在(2)的條件下,若點(diǎn)E是的中點(diǎn),連接CE,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天府新區(qū)某校數(shù)學(xué)活動(dòng)小組在一次活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問題作如下探究:
(1)問題發(fā)現(xiàn):如圖1,在等邊△ABC中,點(diǎn)P是邊BC上任意一點(diǎn),連接AP,以AP為邊作等邊△APQ,連接CQ.求證:BP CQ;
(2)變式探究:如圖2,在等腰△ABC中,ABBC,點(diǎn)P是邊BC上任意一點(diǎn),以AP為腰作等腰△APQ,使AP PQ,APQ ABC,連接CQ.判斷∠ABC和∠ACQ的數(shù)量關(guān)系,并說明理由;
(3)解決問題:如圖3,在正方形ADBC中,點(diǎn)P是邊BC上一點(diǎn),以AP為邊作正方形 APEF,Q是正方形APEF的中心,連接CQ.若正方形APEF的邊長(zhǎng)為6,,求正方形ADBC的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為角平分線交點(diǎn), ,,,將平移使其頂點(diǎn)與重合,則圖中陰影部分的周長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】發(fā)現(xiàn)問題:
(1)如圖1,AB為⊙O的直徑,請(qǐng)?jiān)?/span>⊙O上求作一點(diǎn)P,使∠ABP=45°.(不必寫作法)
問題探究:
(2)如圖2,等腰直角三角形△ABC中,∠A=90°,AB=AC=3,D是AB上一點(diǎn),AD=2,在BC邊上是否存在點(diǎn)P,使∠APD=45°?若存在,求出BP的長(zhǎng)度,若不存在,請(qǐng)說明理由.
問題解決:
(3)如圖3,為矩形足球場(chǎng)的示意圖,其中寬AB=66米、球門EF=8米,且EB=FA.點(diǎn)P、Q分別為BC、AD上的點(diǎn),BP=7米,∠BPQ=135,一位左前鋒球員從點(diǎn)P處帶球,沿PQ方向跑動(dòng),球員在PQ上的何處才能使射門角度(∠EMF)最大?求出此時(shí)PM的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4cm,動(dòng)點(diǎn)E從點(diǎn)A出發(fā),以1cm/秒的速度沿折線AB—BC的路徑運(yùn)動(dòng),到點(diǎn)C停止運(yùn)動(dòng).過點(diǎn)E作 EF∥BD,EF與邊AD(或邊CD)交于點(diǎn)F,EF的長(zhǎng)度y(cm)與點(diǎn)E的運(yùn)動(dòng)時(shí)間x(秒)的函數(shù)圖象大致是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,則△ADE的面積為( )
A.1 B.2 C.5 D.無法確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com