【題目】如圖,AB是⊙O的直徑,C、D為⊙O上的點(diǎn),P為圓外一點(diǎn),PC、PD均與圓相切,設(shè)∠A+∠B=130°,∠CPD=β,則β=_____.
【答案】100°
【解析】
連結(jié)OC,OD,則∠PCO=90°,∠PDO=90°,可得∠CPD+∠COD=180°,根據(jù)OB=OC,OD=OA,可得∠BOC=180°2∠B,∠AOD=180°2∠A,則可得出與β的關(guān)系式.進(jìn)而可求出β的度數(shù).
連結(jié)OC,OD,
∵PC、PD均與圓相切,
∴∠PCO=90°,∠PDO=90°,
∵∠PCO+∠COD+∠ODP+∠CPD=360°,
∴∠CPD+∠COD=180°,
∵OB=OC,OD=OA,
∴∠BOC=180°﹣2∠B,∠AOD=180°﹣2∠A,
∴∠COD+∠BOC+∠AOD=180°,
∴180°﹣∠CPD+180°﹣2∠B+180°﹣2∠A=180°.
∴∠CPD=100°,
故答案為:100°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二次函數(shù)y1,y2的圖象的頂點(diǎn)分別為(a,b)、(c,d),當(dāng)a=﹣c,b=2d,且開(kāi)口方向相同時(shí),則稱y1是y2的“反倍頂二次函數(shù)”.
(1)請(qǐng)寫(xiě)出二次函數(shù)y=x2+x+1的一個(gè)“反倍頂二次函數(shù)”;
(2)已知關(guān)于x的二次函數(shù)y1=x2+nx和二次函數(shù)y2=nx2+x,函數(shù)y1+y2恰是y1﹣y2的“反倍頂二次函數(shù)”,求n.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新定義:對(duì)于關(guān)于的函數(shù)我們稱函數(shù)為函數(shù)的分函數(shù)(其中為常數(shù)).
例如:對(duì)于關(guān)于的一次函數(shù)的分函數(shù)為
(1)若點(diǎn)在關(guān)于的一次函數(shù)的分函數(shù)上,求的值.
(2)寫(xiě)出反比例函數(shù)的分函數(shù)的圖象上隨的增大而減小的的取值范圍 ;
(3)若是二次函數(shù)關(guān)于的分函數(shù).
當(dāng)時(shí),求的取值范圍.
當(dāng)時(shí),則的取值范圍為 ;
(4)若點(diǎn)連結(jié)當(dāng)關(guān)于的二次函數(shù)的分函數(shù),與線段有兩個(gè)交點(diǎn),直接寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程隊(duì)在我市實(shí)施棚戶區(qū)改造過(guò)程中承包了一項(xiàng)拆遷工程.原計(jì)劃每天拆遷,因?yàn)闇?zhǔn)備工作不足,第一天少拆遷了.從第二天開(kāi)始,該工程隊(duì)加快了拆遷速度,第三天拆遷了.求:
該工程隊(duì)第一天拆遷的面積;
若該工程隊(duì)第二天、第三天每天的拆遷面積比前一天增加的百分?jǐn)?shù)相同,求這個(gè)百分?jǐn)?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)P沿AB邊從點(diǎn)A開(kāi)始向點(diǎn)B以2cm/s的速度移動(dòng),點(diǎn)Q沿DA邊從點(diǎn)D開(kāi)始向點(diǎn)A以1cm/s的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t≤6),那么:
(1)當(dāng)t為何值時(shí),△QAP是等腰直角三角形?
(2)當(dāng)t為何值時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連接AF,BF,EF,過(guò)點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè).
(1)求證:AE=GE;
(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BC是⊙O的直徑,AD切⊙于點(diǎn)A,CD∥OA交⊙O于另一點(diǎn)E.
(1)求證:△ACD∽△BCA;
(2)若A是⊙O上一動(dòng)點(diǎn),則
①當(dāng)∠B=_____時(shí),以A,O,C,D為頂點(diǎn)的四邊形是正方形;
②當(dāng)∠B=_____時(shí),以A,O,C,E為頂點(diǎn)的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:已知實(shí)數(shù)m、n滿足,求的值.
解:設(shè),則原方程可化為(t+1)(t-1)=35,整理得t2-1=35,t2=36,
∴t=±6,
∵,
∴
上面這種解題方法為“換元法”,在結(jié)構(gòu)較復(fù)雜的數(shù)和式的運(yùn)算中,若把其中某些部分看成一個(gè)整體,則能使復(fù)雜的問(wèn)題簡(jiǎn)單化,根據(jù)“換元法”解決下列問(wèn)題:
(1)已知實(shí)數(shù)x、y滿足,求的值;
(2)若四個(gè)連續(xù)正整數(shù)的積為360,求這四個(gè)連續(xù)的正整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,與軸正半軸、軸正半軸分別交于點(diǎn)兩點(diǎn),直線交于兩點(diǎn),,的延長(zhǎng)線交于點(diǎn),則的值為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com