【題目】(2016四川省達(dá)州市如圖,P是等邊三角形ABC內(nèi)一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為____________

【答案】

【解析】試題解析:連結(jié)PQ,如圖,

∵△ABC為等邊三角形,∴∠BAC=60°,AB=AC,∵線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AQAP=PQ=6,PAQ=60°,∴△APQ為等邊三角形,∴PQ=AP=6,∵∠CAP+BAP=60°,BAP+BAQ=60°,∴∠CAP=BAQ,在APCABQ中,AC=AB,∠CAP=∠BAQ,AP=AQ,∴△APC≌△ABQPC=QB=10,在BPQ中,∵=64,,,而64+36=100,,∴△PBQ為直角三角形,∠BPQ=90°,S四邊形APBQ=SBPQ+SAPQ==.故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,若,則還需添加的一個(gè)條件有( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EF分別是矩形ABCD的邊AB、BC的中點(diǎn),連AF,CE,AF、CE交于G,則四邊形BEGF與四邊形ADCG的面積的比值為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,經(jīng)過(guò)點(diǎn)A,C且與邊AECE分別交于點(diǎn)D,F,點(diǎn)B是弧AC上一點(diǎn),且弧BC,連接AB,BC,CD

求證:

填空:若AC的直徑,則

當(dāng)的形狀為______時(shí),四邊形OCFD為菱形;

當(dāng)的形狀為______時(shí),四邊形ABCD為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雅美服裝廠現(xiàn)有A種布料70米,B種布料52米,現(xiàn)計(jì)劃用這兩種布料生產(chǎn)MN兩種型號(hào)的時(shí)裝共80套.已知做一套M型號(hào)的時(shí)裝需用A種布料1.1米,B種布料0.4米,可獲利50元;做一套N型號(hào)的時(shí)裝需用A種布料0.6米,B種布料0.9米,可獲利45元.設(shè)生產(chǎn)M型號(hào)的時(shí)裝套數(shù)為x,用這批布料生產(chǎn)兩種型號(hào)的時(shí)裝所獲得的總利潤(rùn)為y元.

1)求y(元)與x(套)的函數(shù)關(guān)系式,并求出自變量的取值范圍;

2)當(dāng)M型號(hào)的時(shí)裝為多少套時(shí),能使該廠所獲利潤(rùn)最大?最大利潤(rùn)是多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在對(duì)某二次三項(xiàng)式進(jìn)行因式分解時(shí),甲同學(xué)因?yàn)榭村e(cuò)了一次項(xiàng)系數(shù)而將其分解為,乙同學(xué)因?yàn)榭村e(cuò)了常數(shù)項(xiàng)而將其分解為,請(qǐng)寫(xiě)出正確的因式分解的結(jié)果__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等邊三角形,BD是中線,P是直線BC上一點(diǎn).

(1) CP=CD,求證:△DBP是等腰三角形;

(2) 在圖中建立以△ABC的邊BC的中點(diǎn)為原點(diǎn),BC所在直線為x軸,BC邊上的高所在直線為y軸的平面直角坐標(biāo)系,如圖,已知等邊△ABC的邊長(zhǎng)為2,AO=,在x軸上是否存在除點(diǎn)P以外的點(diǎn)Q,使△BDQ是等腰三角形?如果存在,請(qǐng)求出Q點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC、△CDE均為等邊三角形,連接BD、AE交于點(diǎn)O,BCAE交于于點(diǎn)P

1)求證:△ACE ≌ △BCD

2)求∠AOB的度數(shù).

3)連接OC,求證:OC平分∠AOD

查看答案和解析>>

同步練習(xí)冊(cè)答案