精英家教網 > 初中數學 > 題目詳情

如圖,拋物線的圖象與x軸交于A、B兩點,與y軸交于C點,已知點B坐標為(4,0).

(1)求拋物線的解析式;
(2)判斷△ABC的形狀,說出△ABC外接圓的圓心位置,并求出圓心的坐標.

(1);(2)該外接圓的圓心為AB的中點,且坐標為:

解析試題分析:(1)該函數解析式只有一個待定系數,只需將B點坐標代入解析式中即可求解;
(2)首先根據拋物線的解析式確定A點、B點、C點坐標,然后通過證明△ABC是直角三角形來推導出直徑AB和圓心的位置,由此確定圓心坐標.
試題解析:(1)∵點B(4,0)在拋物線的圖象上,∴,∴.∴拋物線的解析式為:;
(2)△ABC為直角三角形.令x=0,得:y=-2,∴C(0,-2),令y=0,得,∴x1=-1,x2=4,∴A(-1,0),B(4,0),∴AB=5,AC=5BC=20,∴AC2+BC2=AB2,∴△ABC為直角三角形,∴AB為△ABC外接圓的直徑,∴該外接圓的圓心為AB的中點,且坐標為:
考點: ①待定系數法求二次函數解析式;②勾股定理逆定理;③三角形的外心

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

已知二次函數y=x2–kx+k–1(k>2).

(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個交點;
(2)拋物線與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,若,求拋物線的表達式;
(3)以(2)中的拋物線上一點P(m,n)為圓心,1為半徑作圓,直接寫出:當m取何值時,x軸與相離、相切、相交.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元.為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當的降價措施,經調查發(fā)現,如果每件襯衫每降價1元,商場平均每天可多售出2件.
(1)若商場平均每天要盈利1200元,每件襯衫應降價多少元?
(2)每件襯衫降價多少元,商場平均每天盈利最多?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,
∠DCB=30°.點E、F同時從B點出發(fā),沿射線BC向右勻速移動.已知F點移動速度是E點移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設E點移動距離為x(x>0).

⑴△EFG的邊長是___________ (用含有x的代數式表示),當x=2時,點G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當0<x≤2時,y與x之間的函數關系式;
②當2<x≤6時,y與x之間的函數關系式;
⑶探求⑵中得到的函數y在x取含何值時,存在最大值,并求出最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商店將進價為8元的商品按每件10元售出,每天可售出200件,現在采取提高商品售價減少銷售量的辦法增加利潤,若這種商品每件的銷售價每提高0.5元,其銷售量就減少10件.問(1)每件售價定為多少元時,才能使利潤為640元?(2)每件售價定為多少元時,才能使利潤最大?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線與x軸交于A、B兩點,與y軸交于C點,四邊形OBHC為矩形,CH的延長線交拋物線于點D(5,2),連結BC、AD.

(1)求C點的坐標及拋物線的解析式;(6分)
(2)將△BCH繞點B按順時針旋轉90°后再沿x軸對折得到△BEF(點C與點E對應),判斷點E是否落在拋物線上,并說明理由;(4分)
(3)設過點E的直線交AB邊于點P,交CD邊于點Q.問是否存在點P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點坐標;若不存在,請說明理由. (4分)

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商場銷售一種進價為20元/臺的臺燈,經調查發(fā)現,該臺燈每天的銷售量W(臺),銷售單價x(元)滿足W=-2x+80,設銷售這種臺燈每天的利潤為y(元).求y與x之間的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知二次函數的圖像經過點(0,-4),且當x=2,有最大值—2。求該二次函數的關系式:

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖①,已知拋物線經過點A(0,3),B(3,0),C(4,3).

(1)求拋物線的函數表達式;
(2)求拋物線的頂點坐標和對稱軸;
(3)把拋物線向上平移,使得頂點落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).

查看答案和解析>>

同步練習冊答案