【題目】如圖,在中,對(duì)角線交于點(diǎn),點(diǎn)分別是的中點(diǎn),于點(diǎn).有下列4個(gè)結(jié)論:①;②;③;④,其中說法正確的有(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】D

【解析】

由平行四邊形性質(zhì)和等腰三角形三線合一即可得ED⊥CA;根據(jù)三角形中位線定理可得EF=AB;由直角三角形斜邊上中線等于斜邊一半可得EG=CD,即可得;證明△EFH≌△GDH,即可判斷③和④

解:四邊形ABCD是平行四邊形,

∴OA=OCOB=OD,AD=BC,AD//BCAB=CD,AB//CD

∵BD=2AD,

∴OD=AD

點(diǎn)EOA中點(diǎn),

∴ED⊥CA,故正確;

∵E,F,G分別是OA,OBCD的中點(diǎn),

∴EF//AB,EF=AB

∵∠CED=90°,CG=DG=CD

∴EG=CD,

∴EF=EG,故正確;

∵EF//CD,AB//CD,

EF//CD,

∴∠EFH=GDH FEH=DGH,

EF=DG

EFH≌△GDH

∴FH=HD,

,故正確;

EFH≌△GDH,

∴SEFH=SGDH,

SEFD=SEDG

∵SEDG=SCED,

∴SEFD =SCED,故正確;

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC>ADC,且∠BAD 的平分線 AE 與∠BCD 的平分線 CE 交于點(diǎn) E,則∠AEC與∠ADC、ABC 之間存在的等量關(guān)系是(

A. AEC=ABC﹣2ADC B. AEC=

C. AEC= ABC﹣ADC D. AEC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AC與BD相交于點(diǎn)O,AB=AC,延長BC到點(diǎn)E,使CE=BC,連接AE,分別交BD、CD于點(diǎn)F、G.
(1)求證:△ADB≌△CEA;
(2)若BD=9,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形一底角平分線與另一腰所成銳角為75°,則等腰三角形的頂角的大小為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖所示,在直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3, 已知A(1,3),A1 (2,3), A2 (4,3), A3 (8,3),B(2,0), B1 (4,0), B2 (8,0), B3 (16,0),觀察每次變換前后的三角形有何變化,找出規(guī)律,按此變換規(guī)律將△OA3B3變換成△OAnBn, ,則An的坐標(biāo)是_______ ,Bn的坐標(biāo)是_________ .

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCE的邊長為1,點(diǎn)M、N分別在BC、CD上,且△CMN的周長為2,則△MAN的面積的最小值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2),

1)寫出點(diǎn)AB的坐標(biāo):A_____,_____)、B_____,_____);

2)將△ABC先向左平移2個(gè)單位長度,再向上平移1個(gè)單位長度,得到△ABC′,寫出A′、B′、C′三點(diǎn)坐標(biāo);

3)求△ABC的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,四邊形ABCD是長方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8cm,AD=BC=6cm,D點(diǎn)與原點(diǎn)重合,坐標(biāo)為(0,0)

(1)寫出點(diǎn)B的坐標(biāo);

(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒3個(gè)單位長度的速度向終點(diǎn)B勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)以每秒4個(gè)單位長度的速度沿射線CD方向勻速運(yùn)動(dòng),若P,Q兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)t為何值時(shí),PQ∥BC;

(3)在Q的運(yùn)行過程中,當(dāng)Q運(yùn)動(dòng)到什么位置時(shí),使△ADQ的面積為9,求此時(shí)Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的對(duì)角線相交于點(diǎn)O,延長AB至點(diǎn)E,使BE=AB,連結(jié)CE.

(1)求證:BD=EC;
(2)若AC=2, , 求菱形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案