如圖①,P為△ABC內(nèi)一點(diǎn),連接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一個三角形與△ABC相似,那么就稱P為△ABC的自相似點(diǎn)
⑴如圖②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中線,過點(diǎn)B作BE⊥CD,垂足為E,試說明E是△ABC的自相似點(diǎn).
⑵在△ABC中,∠A<∠B<∠C.
①如圖③,利用尺規(guī)作出△ABC的自相似點(diǎn)P(寫出作法并保留作圖痕跡);
②若△ABC的內(nèi)心P是該三角形的自相似點(diǎn),求該三角形三個內(nèi)角的度數(shù).
【根據(jù)2011江津市中考試第17題改編】
解⑴在Rt △ABC中,∠ACB=90°,CD是AB上的中線,
∴,∴CD=BD.
∴∠BCE=∠ABC.∵BE⊥CD,∴∠BEC=90°,
∴∠BEC=∠ACB.∴△BCE∽△ABC.
∴E是△ABC的自相似點(diǎn).
⑵①作圖略.
作法如下:(i)在∠ABC內(nèi),作∠CBD=∠A;
(ii)在∠ACB內(nèi),作∠BCE=∠ABC;BD交CE于點(diǎn)P.
則P為△ABC的自相似點(diǎn)
②連接PB、PC.∵P為△ABC的內(nèi)心,
∴,.
∵P為△ABC的自相似點(diǎn),∴△BCP∽△ABC.
∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,
∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.
∴∠A+2∠A+4∠A=180°.
∴.∴該三角形三個內(nèi)角的度數(shù)分別為、、.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
OD |
AO |
OE |
BO |
OF |
CO |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com