【題目】如圖,在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)C坐標(biāo)為(10),點(diǎn)A的坐標(biāo)為(0,2).一次函數(shù)ykx+b的圖象經(jīng)過點(diǎn)BC,反比例函數(shù)y的圖象也經(jīng)過點(diǎn)B

(1)求反比例函數(shù)的關(guān)系式;

(2)直接寫出當(dāng)x0時,kx+b0的解集.

【答案】⑴y=;

.

【解析】

(1)作輔助線,證明△BCD≌△AOC,根據(jù)已知求出點(diǎn)B的坐標(biāo)(-3,1),點(diǎn)C的坐標(biāo)(-1,0),即可求出反比例函數(shù)的解析式,

(2)根據(jù)反比例函數(shù)和一次函數(shù)圖像的性質(zhì),找到直線在雙曲線下方的圖像即可解題.

⑴過B做BD垂直于x軸于D,如下圖,

∵點(diǎn)C坐標(biāo)為(-1,0),點(diǎn)A的坐標(biāo)為(0,2),

tan∠ACO=2,則OC=1,

在Rt△AOC中AO=OCtan∠ACO=2,AC=,(勾股定理),

∴sin∠CAO=,

在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,則BC=AC=易知△BCD≌△AOC ,則∠BCD=∠CAO,

∴sin∠BCD=sin∠CAO,

在Rt△BCD中BD=1,CD=2,

B的坐標(biāo)(-3,1),代入y=,解得:m =-3,

反比例函數(shù)的關(guān)系式y=

C坐標(biāo)為(-1,0),待定系數(shù)法解得一次函數(shù)的關(guān)系式y=,


不等式kx+b-<0的解集即是不等式kx+b<的解集,不等式kx+b<可把它看成是一次函數(shù)的關(guān)系式與反比例函數(shù)的關(guān)系式y=,則kx+b<的意思是在圖象上去找一次函數(shù)在反比例函數(shù)下方的x的范圍即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某電信公司提供了A,B兩種方案的移動通訊費(fèi)用y(元)與通話時間x(元)之間的關(guān)系,則下列結(jié)論中正確的有(  )

(1)若通話時間少于120分,則A方案比B方案便宜20元;

(2)若通話時間超過200分,則B方案比A方案便宜12元;

(3)若通訊費(fèi)用為60元,則B方案比A方案的通話時間多;

(4)若兩種方案通訊費(fèi)用相差10元,則通話時間是145分或185分.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOB中,ABOB,且AB=OB=3,設(shè)直線截此三角形所得陰影部分的面積為S,則St之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AM是⊙O直徑,弦BCAM,垂足為點(diǎn)N,弦CDAM于點(diǎn)E,連按ABBE

1)如圖1,若CDAB,垂足為點(diǎn)F,求證:∠BED2BAM

2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE2CN

3)如圖3,ABCDBECD47,AE11,求EM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC≌△DCE≌△GEF,三條對應(yīng)邊BCCE、EF在同一條直線上,連接BG,分別交AC、DCDE于點(diǎn)P、Q、K,其中SPQC=3,則圖中三個陰影部分的面積和為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙C 經(jīng)過原點(diǎn)且與兩坐標(biāo)軸分別交于點(diǎn) A 與點(diǎn) B,點(diǎn) B 的坐標(biāo)為 M 是圓上一點(diǎn),∠BMO=120°.⊙C的圓心C的坐標(biāo)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點(diǎn),拋物線上另有一點(diǎn)Cx軸下方,且使OCA∽△OBC.

(1)求線段OC的長度;

(2)設(shè)直線BCy軸交于點(diǎn)M,點(diǎn)CBM的中點(diǎn)時,求直線BM和拋物線的解析式;

(3)在(2)的條件下,直線BC下方拋物線上是否存在一點(diǎn)P,使得四邊形ABPC面積最大?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于點(diǎn)AB3,0),與y軸交于點(diǎn)C0,3).

1)求拋物線的解析式;

2)若點(diǎn)M是拋物線上在x軸下方的動點(diǎn),過MMNy軸交直線BC于點(diǎn)N,求線段MN的最大值;

3E是拋物線對稱軸上一點(diǎn),F是拋物線上一點(diǎn),是否存在以A,B,E,F為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫字是學(xué)生的一項(xiàng)基本功,為了了解某校學(xué)生的書寫情況,隨機(jī)對該校部分學(xué)生進(jìn)行測試,測試結(jié)果分為A,B,C,D四個等級.根據(jù)調(diào)查結(jié)果繪制了下列兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,回答以下問題:

(1)把條形統(tǒng)計圖補(bǔ)充完整;

(2)若該校共有2000名學(xué)生,估計該校書寫等級為“D的學(xué)生約有 人;

(3)隨機(jī)抽取了4名等級為“A的學(xué)生,其中有3名女生,1名男生,現(xiàn)從這4名學(xué)生中任意抽取2名,用列表或畫樹狀圖的方法,求抽到的兩名學(xué)生都是女生的概率.

查看答案和解析>>

同步練習(xí)冊答案