【題目】如圖1,直線AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB.
(1)求證:直線AB是⊙O的切線;
(2)如圖2,直線BO與⊙O交于點(diǎn)D,E,若BD=4,AB=16,求AE的長(zhǎng).
【答案】(1)答案見(jiàn)解析;(2)AE=.
【解析】試題分析:(1)連接OC,證明OC⊥AB即可;
(2)連接OC,過(guò)E作EF⊥AB與F.設(shè)⊙O的半徑的半徑為r,則OC=OD=r,OB=4+r.
由勾股定理可求出半徑r,OC,BO,BE的長(zhǎng).再由△OCB∽△EFB,求出EF,BF,AF的長(zhǎng),從而得到結(jié)論.
試題解析:(1)證明:連接OC.
∵OA=OB,CA=CB,∴OC⊥AB.
∵OC為⊙O的半徑,∴直線AB是⊙O的切線;
(2)連接OC,過(guò)E作EF⊥AB與F.
設(shè)⊙O的半徑的半徑為r,則OC=OD=r,∴OB=4+r.
∵BC=8,∠BCO=90°,∴,解得:r=6,∴OC=6,BO=10,BE=16.
∵OC⊥AB,EF⊥AB,∴OC∥EF,∴△OCB∽△EFB,
∴,即,
∴EF=,BF=,∴AF=,∴AE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料并解決問(wèn)題:
求1+2+22+23+…...+22014的值,另S=1+2+22+23+…...+22014,
等式兩邊同時(shí)乘2,得2S=2+22+23+.......+22014+22015
兩式相減,得2S - S = 22015 -1 所以S = 22015 - 1
依據(jù)以上計(jì)算方法,計(jì)算:1 + 3 + 32 + ..... + 32019
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知C是AB的中點(diǎn),D是AC的中點(diǎn),E是BC的中點(diǎn).
(1)若DE=9cm,求AB的長(zhǎng).
(2)若CE=5cm,求DB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=2∠B,(1)如圖①,當(dāng)∠C=90°,AD為∠ABC的角平分線時(shí),在AB上截取AE=AC,連接DE,易證AB=AC+CD.請(qǐng)證明AB=AC+CD;
(2)①如圖②,當(dāng)∠C≠90°,AD為∠BAC的角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論,不要求證明;
②如圖③,當(dāng)∠C≠90°,AD為△ABC的外角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個(gè)說(shuō)法:
①,②,③,④.
其中說(shuō)法正確的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀理解)
點(diǎn)A、B、C為數(shù)軸上三點(diǎn),如果點(diǎn)C在A、B之間且到A的距離是點(diǎn)C到B的距離3倍,那么我們就稱點(diǎn)C是{A,B}的奇點(diǎn).
例如,如圖1,點(diǎn)A表示的數(shù)為﹣3,點(diǎn)B表示的數(shù)為1.表示0的點(diǎn)C到點(diǎn)A的距離是3,到點(diǎn)B的距離是1,那么點(diǎn)C是{A,B}的奇點(diǎn);又如,表示﹣2的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是3,那么點(diǎn)D就不是{A,B}的奇點(diǎn),但點(diǎn)D是{B,A}的奇點(diǎn).
(知識(shí)運(yùn)用)
如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣3,點(diǎn)N所表示的數(shù)為5.
(1)數(shù) 所表示的點(diǎn)是{M,N}的奇點(diǎn);數(shù) 所表示的點(diǎn)是{N,M}的奇點(diǎn);
(2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣50,點(diǎn)B所表示的數(shù)為30.現(xiàn)有一動(dòng)點(diǎn)P從點(diǎn)B出發(fā)向左運(yùn)動(dòng),當(dāng)P點(diǎn)運(yùn)動(dòng)到數(shù)軸上的什么位置時(shí),P、A和B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,P是線段AB上的一點(diǎn),在AB的同側(cè)作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,連接CD,點(diǎn)E、F、G、H分別是AC、AB、BD、CD的中點(diǎn),順次連接E、F、G、H.
(1)猜想四邊形EFGH的形狀,直接回答,不必說(shuō)明理由;
(2)當(dāng)點(diǎn)P在線段AB的上方時(shí),如圖2,在△APB的外部作△APC和△BPD,其他條件不變,(1)中的結(jié)論還成立嗎?說(shuō)明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其他條件不變,先補(bǔ)全圖3,再判斷四邊形EFGH的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC為等邊三角形,點(diǎn)E、F分別在BC和AB上,且CE=BF,AE與CF相交于點(diǎn)H.
(1)求證:△ACE≌△CBF;
(2)求∠CHE的度數(shù);
(3)如圖2,在圖1上以AC為邊長(zhǎng)再作等邊△ACD,將HE延長(zhǎng)至G使得HG=CH,連接HD與CG,求證:HD=AH+CH
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是矩形ABCD的邊AD上一個(gè)動(dòng)點(diǎn),矩形的兩條邊AB、BC的長(zhǎng)分別為6和8,那么點(diǎn)P到矩形的兩條對(duì)角線AC和BD的距離之和是__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com