【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負(fù)半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
【答案】(1) m=4,k=8,n=4;(2)△ABC的面積為4.
【解析】試題分析:(1)由點A的縱坐標(biāo)為2知OC=2,由OD=OC知OD=1、CD=3,根據(jù)△ACD的面積為6求得m=4,將A的坐標(biāo)代入函數(shù)解析式求得k,將點B坐標(biāo)代入函數(shù)解析式求得n;
(2)作BE⊥AC,得BE=2,根據(jù)三角形面積公式求解可得.
試題解析:(1)∵點A的坐標(biāo)為(m,2),AC平行于x軸,
∴OC=2,AC⊥y軸,
∵OD=OC,
∴OD=1,
∴CD=3,
∵△ACD的面積為6,
∴CDAC=6,
∴AC=4,即m=4,
則點A的坐標(biāo)為(4,2),將其代入y=可得k=8,
∵點B(2,n)在y=的圖象上,
∴n=4;
(2)如圖,過點B作BE⊥AC于點E,則BE=2,
∴S△ABC=ACBE=×4×2=4,
即△ABC的面積為4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】永州市是一個降水豐富的地區(qū),今年4月初,某地連續(xù)降雨導(dǎo)致該地某水庫水位持續(xù)上漲,下表是該水庫4月1日~4月4日的水位變化情況:
日期x | 1 | 2 | 3 | 4 |
水位y(米) | 20.00 | 20.50 | 21.00 | 21.50 |
(1)請建立該水庫水位y與日期x之間的函數(shù)模型;
(2)請用求出的函數(shù)表達(dá)式預(yù)測該水庫今年4月6日的水位;
(3)你能用求出的函數(shù)表達(dá)式預(yù)測該水庫今年12月1日的水位嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:①線段是軸對稱圖形,②成軸對稱的兩個圖形對稱點的連線互相平行,③等腰三角形的角平分線就是底邊的垂直平分線,④已知兩腰就能確定等腰三角形的形狀和大小,正確的有( ) .
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點,直線l:x=1,點A(2,0),點E,點F,點M都在直線l上,且點E和點F關(guān)于點M對稱,直線EA與直線OF交于點P.
(Ⅰ)若點M的坐標(biāo)為(1,﹣1),
①當(dāng)點F的坐標(biāo)為(1,1)時,如圖,求點P的坐標(biāo);
②當(dāng)點F為直線l上的動點時,記點P(x,y),求y關(guān)于x的函數(shù)解析式.
(Ⅱ)若點M(1,m),點F(1,t),其中t≠0,過點P作PQ⊥l于點Q,當(dāng)OQ=PQ時,試用含t的式子表示m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】位于張家界核心景區(qū)的賀龍銅像,是我國近百年來最大的銅像.銅像由像體AD和底座CD兩部分組成.如圖,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像體AD的高度(最后結(jié)果精確到0.1米,參考數(shù)據(jù):sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《函數(shù)的圖象與性質(zhì)》拓展學(xué)習(xí)片段展示:
【問題】如圖①,在平面直角坐標(biāo)系中,拋物線y=a(x﹣2)2﹣經(jīng)過原點O,與x軸的另一個交點為A,則a= .
【操作】將圖①中拋物線在x軸下方的部分沿x軸折疊到x軸上方,將這部分圖象與原拋物線剩余部分的圖象組成的新圖象記為G,如圖②.直接寫出圖象G對應(yīng)的函數(shù)解析式.
【探究】在圖②中,過點B(0,1)作直線l平行于x軸,與圖象G的交點從左至右依次為點C,D,E,F(xiàn),如圖③.求圖象G在直線l上方的部分對應(yīng)的函數(shù)y隨x增大而增大時x的取值范圍.
【應(yīng)用】P是圖③中圖象G上一點,其橫坐標(biāo)為m,連接PD,PE.直接寫出△PDE的面積不小于1時m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場甲、乙、丙三名業(yè)務(wù)員5個月的銷售額(單位:萬元)如下表:
月份銷售額人員 | 第1月 | 第2月 | 第3月 | 第4月 | 第5月 |
甲 | 7.2 | 9.6 | 9.6 | 7.8 | 9.3 |
乙 | 5.8 | 9.7 | 9.8 | 5.8 | 9.9 |
丙 | 4 | 6.2 | 8.5 | 9.9 | 9.9 |
(1)根據(jù)上表中的數(shù)據(jù),將下表補充完整:
統(tǒng)計值 數(shù)值 人員 | 平均數(shù)(萬元) | 中位數(shù)(萬元) | 眾數(shù)(萬元) |
甲 | 9.3 | 9.6 | |
乙 | 8.2 | 5.8 | |
丙 | 7.7 | 8.5 |
(2)甲、乙、丙三名業(yè)務(wù)員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點,且AE=BC,過點A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點F.
(1)判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)連接BD、BE,若設(shè)BC=a,AC=b,AB=c,請利用四邊形ADBE的面積證明勾股定理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
=1- , = - , = - .
將以上三個等式的兩邊分別相加,得:
+ + =1- + - + - =1- = .
(1)直接寫出計算結(jié)果:
+ + +…+ =.
(2)仿照 =1- , = - , = - 的形式,猜想并寫出: =.
(3)解方程: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com