【題目】如圖,拋物線的對(duì)稱軸為直線,與軸的一個(gè)交點(diǎn)坐標(biāo)為,其部分圖象如圖所示,下列結(jié)論:
①;②方程的兩個(gè)根是,③;④當(dāng)時(shí),的取值范圍是;⑤當(dāng)時(shí),隨增大而增大
其中結(jié)論正確的個(gè)數(shù)是( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
【答案】C
【解析】
利用拋物線與x軸的交點(diǎn)個(gè)數(shù)可對(duì)①進(jìn)行判斷;利用拋物線的對(duì)稱性得到拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(3,0),則可對(duì)②進(jìn)行判斷;由對(duì)稱軸方程得到b=-2a,然后根據(jù)x=-1時(shí)函數(shù)值為0可得到3a+c=0,則可對(duì)③進(jìn)行判斷;根據(jù)拋物線在x軸上方所對(duì)應(yīng)的自變量的范圍可對(duì)④進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)對(duì)⑤進(jìn)行判斷.
①∵拋物線與x軸有兩個(gè)交點(diǎn),
∴△=b24ac>0,
∴4ac<b2,結(jié)論①正確;
②∵拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(1,0),
∴拋物線與x軸的另一交點(diǎn)坐標(biāo)為(3,0),
∴方程ax2+bx+c=0的兩個(gè)根是x1=1,x2=3,結(jié)論②正確;
③∵拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,
∴b2a=1,
∴b=2a.
∵當(dāng)x=1時(shí),y=0,
∴ab+c=0,即3a+c=0,結(jié)論③錯(cuò)誤;
④∵拋物線與x軸的交點(diǎn)坐標(biāo)為(1,0)、(3,0),
∴當(dāng)y>0時(shí),x的取值范圍是1<x<3,結(jié)論④錯(cuò)誤;
⑤∵拋物線開(kāi)口向下,對(duì)稱軸為直線x=1,
∴當(dāng)x<0時(shí),y隨x增大而增大,結(jié)論⑤正確。
綜上所述:正確的結(jié)論有①②⑤。
故答案為:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩地相距60km,甲從A地去B地,乙從B地去A地,圖中、分別表示甲、乙兩人到B地的距離y(km)與甲出發(fā)時(shí)間x(h)的函數(shù)關(guān)系圖象.
(1)根據(jù)圖象,求乙的行駛速度.
(2)解釋交點(diǎn)A的實(shí)際意義.
(3)求甲出發(fā)多少時(shí)間,兩人之間恰好相距5km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張三同學(xué)投擲一枚骰子兩次,兩次所投擲的點(diǎn)數(shù)分別用字母m、n表示
(1)求使關(guān)于x的方程x2﹣mx+2n=0有實(shí)數(shù)根的概率;
(2)求使關(guān)于x的方程mx2+nx+1=0有兩個(gè)相等實(shí)根的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=kx+b經(jīng)過(guò)點(diǎn)A(5,0),B(1,4).
(1)求直線AB的解析式;
(2)若直線y=2x﹣4與直線AB相交于點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)根據(jù)圖象,寫(xiě)出關(guān)于x的不等式2x﹣4≥kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品現(xiàn)在的售價(jià)為每件元,每星期可賣(mài)出件,市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)元,每星期要少賣(mài)出件;每降價(jià)元,每星期可多賣(mài)出件,已知商品的進(jìn)價(jià)為每件元,如何定價(jià)才能使利潤(rùn)最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究
(1)如圖①,在△ABC 中,∠B=30°,E 是 AB 邊上的點(diǎn),過(guò)點(diǎn) E 作 EF⊥BC 于 F,則的值為 .
(2)如圖②,在四邊形 ABCD 中,AB=BC=6,∠ABC=60°,對(duì)角線 BD 平分∠ABC,點(diǎn)E 是對(duì)角線 BD 上一點(diǎn),求 AE+ BE的最小值.
問(wèn)題解決
(3)如圖③,在平面直角坐標(biāo)系中,直線 y -x 4 分別于 x 軸,y 軸交于點(diǎn) A、B,點(diǎn) P 為直線 AB 上的動(dòng)點(diǎn),以 OP 為邊在其下方作等腰 Rt△OPQ 且∠POQ=90°.已知點(diǎn)C(0,-4),點(diǎn) D(3,0)連接 CQ、DQ,那么DQ CQ是否存在最小值,若存在求出其最小值及此時(shí)點(diǎn) P 的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于y軸對(duì)稱的△ABlCl;
(2)點(diǎn)P在x軸上,且點(diǎn)P到點(diǎn)B與點(diǎn)C的距離之和最小,直接寫(xiě)出點(diǎn)P的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)y=kx經(jīng)過(guò)點(diǎn)A,點(diǎn)A在第四象限,過(guò)點(diǎn)A作AH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.
(1)求正比例函數(shù)的表達(dá)式;
(2)在x軸上能否找到一點(diǎn)M,使△AOM是等腰三角形?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com