【題目】下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.
【答案】C
【解析】解:A、是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;
B、是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;
C、既是軸對稱圖形又是中心對稱圖形,故本選項符合題意;
D、是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意.
所以答案是:C.
【考點精析】通過靈活運用軸對稱圖形和中心對稱及中心對稱圖形,掌握兩個完全一樣的圖形關(guān)于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“迷你馬拉松”長跑比賽,運動員從起點甲地出發(fā),跑到乙地后,沿原路線再跑回點甲地.設(shè)該運動員離開起點甲地的路程s(km)與跑步時間t(min)之間的函數(shù)關(guān)系如圖所示.已知該運動員從甲地跑到乙地時的平均速度是0.2km/min,根據(jù)圖象提供的信息,解答下列問題:
(1)a=km;
(2)組委會在距離起點甲地3km處設(shè)立一個拍攝點P,該運動員從第一次過P點到第二次過P點所用的時間為24min.
①求AB所在直線的函數(shù)表達(dá)式;
②該運動員跑完全程用時多少min?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)三角形中一個內(nèi)角是另一個內(nèi)角的3倍時,我們稱此三角形為“夢想三角形”.如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內(nèi)角的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格紙中,點A、B、C在小正方形的頂點上.
(1)求的面積;
(2)在圖中畫出與關(guān)于直線1成軸對稱的;
(3)在如圖所示網(wǎng)格紙中,以為一邊作與全等的三角形,可以作出多少個三角形與全等(不要超出網(wǎng)格紙的范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D,E,F分別是三角形ABC的邊BC,CA,AB上的點. 請你從以下四個關(guān)系
∠FDE=∠A 、∠BFD=∠DEC 、DE∥BA、DF∥CA中選擇三個適當(dāng)?shù)靥顚懺谙旅娴臋M線上,使其形成一個真命題,并有步驟的證明這個命題(證明過程中注明推理根據(jù)).
如果 , ,
求證: .
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的三個頂點的坐標(biāo)分別為,.
(1)在圖中畫出關(guān)于軸的對稱圖形;
(2)在圖中的軸上找一點,使的值最。ūA糇鲌D痕跡),并直接寫出點的坐標(biāo);
(3)在圖中的軸上找一點,使的值最。ūA糇鲌D痕跡),并直接寫出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過矩形ABCD的對角線AC的中點O作EF⊥AC,交BC邊于點E,交AD邊于點F,分別連接AE、CF,若AB=2 ,∠DCF=30°,則EF的長為( )
A.4
B.6
C.
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠設(shè)計了一款產(chǎn)品,成本價為每件10元.投放市場進(jìn)行試銷,得到如下數(shù)據(jù):
售價x(元/件) | … | 30 | 40 | 50 | 60 | … |
日銷售量y(件) | … | 50 | 40 | 30 | 20 | … |
(1)若日銷售量y(件)是售價x(元/件)的一次函數(shù),求這個一次函數(shù)解析式.
(2)設(shè)這個工廠試銷該產(chǎn)品每天獲得的利潤為w(元),當(dāng)售價定為每件多少元時,工廠每天獲得的利潤最大?最大利潤是多少元?(每天利潤=每天銷售總收入﹣每天銷售總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,⊙O交BC于D,過D作⊙O的切線DE交AC于E,且DE⊥AC,由上述條件,你能推出的正確結(jié)論有:(要求:不再標(biāo)注其他字母,找結(jié)論的過程中所連輔助線不能出現(xiàn)在結(jié)論中,不寫推理過程,至少寫出4個結(jié)論,結(jié)論不能類同).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com