【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù) (m為常數(shù))的圖象與x軸交于點(diǎn)A(﹣3,0),與y軸交于點(diǎn)C.以直線x=1為對(duì)稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過A,C兩點(diǎn),并與x軸的正半軸交于點(diǎn)B.
(1)求m的值及拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上一點(diǎn),過點(diǎn)E作直線AC的平行線交x軸于點(diǎn)F.是否存在這樣的點(diǎn)E,使得以A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)E的坐標(biāo)及相應(yīng)的平行四邊形的面積;若不存在,請(qǐng)說明理由;
(3)若P是拋物線對(duì)稱軸上使△ACP的周長取得最小值的點(diǎn),過點(diǎn)P任意作一條與y軸不平行的直線交拋物線于M1(x1 , y1),M2(x2 , y2)兩點(diǎn),試探究 是否為定值,并寫出探究過程.
【答案】
(1)
解:∵ 經(jīng)過點(diǎn)(﹣3,0),
∴0=- +m,解得m= ,
∴直線解析式為 ,C(0, ).
∵拋物線y=ax2+bx+c對(duì)稱軸為x=1,且與x軸交于A(﹣3,0),
∴另一交點(diǎn)為B(5,0),
設(shè)拋物線解析式為y=a(x+3)(x﹣5),
∵拋物線經(jīng)過C(0, ),
∴ =a3(﹣5),解得a=- ,
∴拋物線解析式為y=- x2+ x+
(2)
解:假設(shè)存在點(diǎn)E使得以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形,
則AC∥EF且AC=EF.如答圖1,
(i)當(dāng)點(diǎn)E在點(diǎn)E位置時(shí),過點(diǎn)E作EG⊥x軸于點(diǎn)G,
∵AC∥EF,∴∠CAO=∠EFG,
又∵ ,
∴△CAO≌△EFG,
∴EG=CO= ,即yE= ,
∴ =- xE2+ xE+ ,解得xE=2(xE=0與C點(diǎn)重合,舍去),
∴E(2, ),SACEF= ;
(ii)當(dāng)點(diǎn)E在點(diǎn)E′位置時(shí),過點(diǎn)E′作E′G′⊥x軸于點(diǎn)G′,
同理可求得E′( +1,- ),SACF′E′=
(3)
解:要使△ACP的周長最小,只需AP+CP最小即可.
如答圖2,連接BC交x=1于P點(diǎn),因?yàn)辄c(diǎn)A、B關(guān)于x=1對(duì)稱,根據(jù)軸對(duì)稱性質(zhì)以及兩點(diǎn)之間線段最短,可知此時(shí)AP+CP最小(AP+CP最小值為線段BC的長度).
∵B(5,0),C(0, ),
∴直線BC解析式為y=- x+ ,
∵xP=1,∴yP=3,即P(1,3).
令經(jīng)過點(diǎn)P(1,3)的直線為y=kx+b,則k+b=3,即b=3﹣k,
則直線的解析式是:y=kx+3﹣k,
∵y=kx+3﹣k,y=- x2+ x+ ,
聯(lián)立化簡得:x2+(4k﹣2)x﹣4k﹣3=0,
∴x1+x2=2﹣4k,x1x2=﹣4k﹣3.
∵y1=kx1+3﹣k,y2=kx2+3﹣k,
∴y1﹣y2=k(x1﹣x2).
根據(jù)兩點(diǎn)間距離公式得到:
M1M2= = =
∴M1M2= = =4(1+k2).
又M1P= = = ;
同理M2P=
∴M1PM2P=(1+k2) =(1+k2) =(1+k2) =4(1+k2).
∴M1PM2P=M1M2,
∴ =1為定值.
【解析】(1)首先求得m的值和直線的解析式,根據(jù)拋物線對(duì)稱性得到B點(diǎn)坐標(biāo),根據(jù)A、B點(diǎn)坐標(biāo)利用交點(diǎn)式求得拋物線的解析式;(2)存在點(diǎn)E使得以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形.如答圖1所示,過點(diǎn)E作EG⊥x軸于點(diǎn)G,構(gòu)造全等三角形,利用全等三角形和平行四邊形的性質(zhì)求得E點(diǎn)坐標(biāo)和平行四邊形的面積.注意:符合要求的E點(diǎn)有兩個(gè),如答圖1所示,不要漏解;(3)本問較為復(fù)雜,如答圖2所示,分幾個(gè)步驟解決:
第1步:確定何時(shí)△ACP的周長最。幂S對(duì)稱的性質(zhì)和兩點(diǎn)之間線段最短的原理解決;第2步:確定P點(diǎn)坐標(biāo)P(1,3),從而直線M1M2的解析式可以表示為y=kx+3﹣k;第3步:利用根與系數(shù)關(guān)系求得M1、M2兩點(diǎn)坐標(biāo)間的關(guān),得到x1+x2=2﹣4k,x1x2=﹣4k﹣3.這一步是為了后續(xù)的復(fù)雜計(jì)算做準(zhǔn)備;第4步:利用兩點(diǎn)間的距離公式,分別求得線段M1M2、M1P和M2P的長度,相互比較即可得到結(jié)論: =1為定值.這一步涉及大量的運(yùn)算,注意不要出錯(cuò),否則難以得出最后的結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道對(duì)于一個(gè)圖形,通過不同的方法計(jì)算圖形的面積可以得到一個(gè)數(shù)學(xué)等式.
例如:由圖1可得到(a+b)=a+2ab+b.
圖1 圖2 圖3
(1)寫出由圖2所表示的數(shù)學(xué)等式:_____________________;寫出由圖3所表示的數(shù)學(xué)等式:_____________________;
(2)利用上述結(jié)論,解決下面問題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=100°,∠C=70°,點(diǎn)M、N分別在AB、BC上,將△BMN沿MN翻折,得△FMN.若MF∥AD,F(xiàn)N∥DC,則∠B的度數(shù)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,G是CD上一點(diǎn),延長BC到E,使CE=CG,連接BG并延長交DE于F.
(1)求證:△BCG≌△DCE;
(2)將△DCE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)D、E分別在邊AC、BC上(不與點(diǎn)A、B、C重合),點(diǎn)P是直線AB上的任意一點(diǎn)(不與點(diǎn)A、B重合).設(shè)∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.
(1)如圖,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng),且n=90°時(shí)
①若PD∥BC,PE∥AC,則m=_____;
②若m=50°,求x+y的值.
(2)當(dāng)點(diǎn)P在直線AB上運(yùn)動(dòng)時(shí),直接寫出x、y、m、n之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若正方形EFGH由正方形ABCD繞某點(diǎn)旋轉(zhuǎn)得到,則可以作為旋轉(zhuǎn)中心的是( )
A.M或O或N
B.E或O或C
C.E或O或N
D.M或O或C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情景:
如圖1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:
過點(diǎn)P作PE//AB,
∴∠PAB+∠APE=180°.
∵∠PAB=130°,∴∠APE=50°
∵AB//CD,PE//AB,∴PE//CD,
∴∠PCD+∠CPE=180°.
∵∠PCD=120°,∴∠CPE=60°
∴∠APC=∠APE+∠CPE=110°.
問題遷移:
如果AB與CD平行關(guān)系不變,動(dòng)點(diǎn)P在直線AB、CD所夾區(qū)域內(nèi)部運(yùn)動(dòng)時(shí),∠PAB,∠PCD的度數(shù)會(huì)跟著發(fā)生變化.
(1)如圖3,當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到直線AC右側(cè)時(shí),請(qǐng)寫出∠PAB,∠PCD和∠APC之間的數(shù)量關(guān)系?并說明理由.
(2)如圖4,AQ,CQ分別平分∠PAB,∠PCD,那么∠AQC和角∠APC有怎擇的數(shù)量關(guān)系?
(3)如圖5,點(diǎn)P在直線AC的左側(cè)時(shí),AQ,CQ仍然平分∠PAB,∠PCD,請(qǐng)直接寫出∠AQC和角∠APC的數(shù)量關(guān)系 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同慶中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從軍躍體育用品商店一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購買3個(gè)足球和2個(gè)籃球共需310元,購買2個(gè)足球和5個(gè)籃球共需500元.
(1)購買一個(gè)足球、一個(gè)籃球各需多少元?
(2)根據(jù)同慶中學(xué)的實(shí)際情況,需從軍躍體育用品商店一次性購買足球和籃球共96個(gè),要求購買足球和籃球的總費(fèi)用不超過5720元,這所中學(xué)最多可以購買多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織九年級(jí)學(xué)生參加漢字聽寫大賽,并隨機(jī)抽取部分學(xué)生成績作為樣本進(jìn)行分析,繪制成如下的統(tǒng)計(jì)表:
請(qǐng)根據(jù)所給信息,解答下列問題:
(1)a=__________,b=__________;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)已知該年級(jí)有400名學(xué)生參加這次比賽,若成績?cè)?/span>90分以上(含90分)的為優(yōu),估計(jì)該年級(jí)成績?yōu)閮?yōu)的有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com