(1999•廣州)如圖,PB是⊙O的割線,點A,B是它與⊙O的交點,PO交⊙O于點C,AB=4,PA=6,PC=4,求OC.

【答案】分析:延長PO交⊙O于點D.根據(jù)割線定理列方程求解.
解答:解:延長PO交⊙O于點D.
由割線定理,得
PC•PD=PA•PB,
PC(PC+2OC)=PA(PA+AB)
∵PC=4,PA=6,AB=4,
∴4(4+2OC)=6(6+4),
∴OC=
點評:此題要通過作輔助線,構造割線,熟練運用割線定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(1999•廣州)如圖,已知AB是⊙O的直徑,點D在弦AC上,DE⊥AB于E.
求證:AD•AC=AE•AB.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

(1999•廣州)如圖,已知線段a,b.求作:
(1)Rt△ABC,使∠ACB=90°,BC=a,AC=b;
(2)△ABC的角平分線CD和經(jīng)過點A,C,D的⊙O.(作CD和⊙O不要求寫作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《圓》(07)(解析版) 題型:解答題

(1999•廣州)如圖,已知正方形的邊長是4cm,求它的內切圓與外接圓組成的圓環(huán)的面積.(答案保留π)

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《圓》(06)(解析版) 題型:解答題

(1999•廣州)如圖,等邊△ABC的面積為S,⊙O是它的外接圓,點P是的中點.
(1)試判斷過點C所作⊙O的切線與直線AB是否相交,并證明你的結論;
(2)設直線CP與AB相交于點D,過點B作BE⊥CD,垂足為E,證明BE是⊙O的切線,并求△BDE的面積.

查看答案和解析>>

同步練習冊答案