【題目】借鑒我們已有研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)的圖像與性質(zhì),研究過(guò)程如下,請(qǐng)補(bǔ)充完整.
(1)自變量的取值范圍是全體實(shí)數(shù),與的幾組對(duì)應(yīng)值列表如下:
-3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | |||
10 | -2 | 1 | 1 | -2 | 3 | 10 |
其中,_______,=________;
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出函數(shù)圖像;
(3)觀察函數(shù)圖像:
①寫出函數(shù)的一條圖像性質(zhì):__________;
②當(dāng)方程有且僅有兩個(gè)不相等的實(shí)數(shù)根,根據(jù)函數(shù)圖像直接寫出的取值范圍為________.
【答案】(1)3;2;(2)圖像見(jiàn)解析;①圖像具有對(duì)稱性,對(duì)稱軸是直線(或當(dāng)或時(shí),函數(shù)的最小值是-2,答案不唯一),②或.
【解析】
(1)將,代入函數(shù)解析式即可求出m,n的值;
(2)利用表格數(shù)據(jù)描點(diǎn),再用平滑的曲線連接即可;
(3)①從圖象與坐標(biāo)軸的交點(diǎn),圖象的對(duì)稱性,對(duì)稱軸,增減性等方面寫出一條性質(zhì)即可;
②根據(jù)函數(shù)與有兩個(gè)交點(diǎn),結(jié)合圖像即可得出答案.
(1)當(dāng)時(shí),
∴
當(dāng)時(shí),
∴
故答案為:3,2;
(2)圖像如下:
(3)①圖像具有對(duì)稱性,對(duì)稱軸是直線(或當(dāng)或時(shí),函數(shù)的最小值是-2,答案不唯一)
②方程可變形為,
故找到函數(shù)與有兩個(gè)交點(diǎn)的情況即可,
由圖像可知,當(dāng)或時(shí),
函數(shù)與有兩個(gè)交點(diǎn),
故答案為:或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.
(1)如圖1,連接DE,BG,M為線段BG的中點(diǎn),連接AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;
(2)在圖1的基礎(chǔ)上,將正方形AEFG繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點(diǎn),連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)試證明:無(wú)論取何值此方程總有兩個(gè)實(shí)數(shù)根;
(2)若原方程的兩根,滿足,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示矩形中,,,與滿足的反比例函數(shù)關(guān)系如圖2所示,等腰直角三角形的斜邊過(guò)點(diǎn),點(diǎn),分別在,上,為的中點(diǎn),則下列結(jié)論正確的是( )
A.當(dāng)時(shí),
B.當(dāng)時(shí),
C.當(dāng)增大時(shí),的值增大
D.當(dāng)增大時(shí),的值不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰直角三角形中,,,點(diǎn)在斜邊上(),作,且,連接,如圖(1).
(1)求證:;
(2)延長(zhǎng)至點(diǎn),使得,與交于點(diǎn).如圖(2).
①求證:;
②求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與x軸、y軸分別交于點(diǎn)A,B,與雙曲線分別交于點(diǎn)C,D,且點(diǎn)C的坐標(biāo)為.
(1)分別求出直線、雙曲線的函數(shù)表達(dá)式.
(2)求出點(diǎn)D的坐標(biāo).
(3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面內(nèi)容,并按要求解決問(wèn)題: 問(wèn)題:“在平面內(nèi),已知分別有個(gè)點(diǎn),個(gè)點(diǎn),個(gè)點(diǎn),5 個(gè)點(diǎn),…,n 個(gè)點(diǎn),其中任意三 個(gè)點(diǎn)都不在同一條直線上.經(jīng)過(guò)每?jī)牲c(diǎn)畫一條直線,它們可以分別畫多少條直線? ” 探究:為了解決這個(gè)問(wèn)題,希望小組的同學(xué)們?cè)O(shè)計(jì)了如下表格進(jìn)行探究:(為了方便研 究問(wèn)題,圖中每條線段表示過(guò)線段兩端點(diǎn)的一條直線)
請(qǐng)解答下列問(wèn)題:
(1)請(qǐng)幫助希望小組歸納,并直接寫出結(jié)論:當(dāng)平面內(nèi)有個(gè)點(diǎn)時(shí),直線條數(shù)為 ;
(2)若某同學(xué)按照本題中的方法,共畫了條直線,求該平面內(nèi)有多少個(gè)已知點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l為正比例函數(shù)y=x的圖象,點(diǎn)A1的坐標(biāo)為(1,0),過(guò)點(diǎn)A1作x軸的垂線交直線l于點(diǎn)D1,以A1D1為邊作正方形A1B1C1D1;過(guò)點(diǎn)C1作直線l的垂線,垂足為A2,交x軸于點(diǎn)B2,以A2B2為邊作正方形A2B2C2D2;過(guò)點(diǎn)C2作x軸的垂線,垂足為A3,交直線l于點(diǎn)A3,以A3D3為邊作正方形A3B3C3D3,…,按此規(guī)律操作下所得到的正方形A2019B2019C2019D2019的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的流體,并用流量、速度、密度三個(gè)概念描述車流的基本特征,其中流量(輛小時(shí))指單位時(shí)間內(nèi)通過(guò)道路指定斷面的車輛數(shù);速度(千米小時(shí))指通過(guò)道路指定斷面的車輛速度,密度(輛千米)指通過(guò)道路指定斷面單位長(zhǎng)度內(nèi)的車輛數(shù).為配合大數(shù)據(jù)治堵行動(dòng),測(cè)得某路段流量與速度之間關(guān)系的部分?jǐn)?shù)據(jù)如下表:
速度v(千米/小時(shí)) | ||||||||
流量q(輛/小時(shí)) |
(1)根據(jù)上表信息,下列三個(gè)函數(shù)關(guān)系式中,刻畫,關(guān)系最準(zhǔn)確是_____________________.(只填上正確答案的序號(hào))
①;②;③
(2)請(qǐng)利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車流速度為多少時(shí),流量達(dá)到最大?最大流量是多少?
(3)已知,,滿足,請(qǐng)結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問(wèn)題:市交通運(yùn)行監(jiān)控平臺(tái)顯示,當(dāng)時(shí)道路出現(xiàn)輕度擁堵.試分析當(dāng)車流密度在什么范圍時(shí),該路段將出現(xiàn)輕度擁堵?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com