如圖,△ABC中,AB=AC,延長(zhǎng)BC至D,使CD=BC,點(diǎn)E在邊AC上,以CE,CD為鄰邊做?CDFE,過(guò)點(diǎn)C精英家教網(wǎng)作CG∥AB交EF于點(diǎn)G,連接BG,DE.
(1)∠ACB與∠GCD有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(2)求證:△BCG≌△DCE.
分析:根據(jù)全等三角形的判定定理.
解答:(1)解:∠ACB=∠GCD.
理由如下:∵AB=AC,
∴∠ABC=∠ACB
∵CG∥AB,
∴∠ABC=∠GCD,
∴∠ACB=∠GCD.

(2)證明:∵四邊形CDFE是平行四邊形,
∴EF∥CD.
∴∠ACB=∠GEC,∠EGC=∠GCD.
∵∠ACB=∠GCD,
∴∠GEC=∠EGC,
∴EC=GC,
∵∠GCD=∠ACB,
∴∠GCB=∠ECD.
在△BCG和△DCE中
GC=EC
∠GCB=∠ECD
BC=DC

∴△BCG≌△DCE.
點(diǎn)評(píng):三角形全等的判定是中考的熱點(diǎn),一般以考查三角形全等的方法為主,判定兩個(gè)三角形全等,先根據(jù)求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案