【題目】【探究函數(shù)y=x+ 的圖象與性質(zhì)】
(1)函數(shù)y=x+ 的自變量x的取值范圍是;
(2)下列四個(gè)函數(shù)圖象中函數(shù)y=x+ 的圖象大致是;
(3)對(duì)于函數(shù)y=x+ ,求當(dāng)x>0時(shí),y的取值范圍. 請(qǐng)將下列的求解過程補(bǔ)充完整.
解:∵x>0
∴y=x+ =( )2+( )2=( ﹣ )2+
∵( ﹣ )2≥0
∴y≥ .
(4)若函數(shù)y= ,則y的取值范圍 .
【答案】
(1)x≠0
(2)C
(3)4;4
(4)y≥13
【解析】解:(1)函數(shù)y=x+ 的自變量x的取值范圍是x≠0;(2)函數(shù)y=x+ 的圖象大致是C;(3)解:∵x>0 ∴y=x+ =( )2+( )2=( ﹣ )2+4
∵( ﹣ )2≥0
∴y≥4.
4)y= =x+ ﹣5═( )2+( )2﹣5=( + )2+13
∵( ﹣ )2≥0,
∴y≥13.
所以答案是:x≠0,C,4,4,y≥13,
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解一次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減小,以及對(duì)反比例函數(shù)的性質(zhì)的理解,了解性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的反比例函數(shù),且x=8時(shí),y=12.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)如果自變量x的取值范圍是2≤x≤3,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是 的直徑, 是弦, , .若用扇形 (圖中陰影部分)圍成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐底面圓的半徑是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方形中,cm,cm,點(diǎn)為的中點(diǎn).若點(diǎn) 在線段上以1 cm/s的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),到點(diǎn)時(shí)不動(dòng).同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等,經(jīng)過1 s后,與是否全等?請(qǐng)說明理由,并判斷此時(shí)線段和的位置關(guān)系;
(2)若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等,運(yùn)動(dòng)時(shí)間為s,設(shè)的面積為cm2,請(qǐng)用含的代數(shù)式表示
(3)若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)的運(yùn)動(dòng)速度為多少時(shí),能夠使與全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題9分)把代數(shù)式通過配湊等手段,得到完全平方式,再運(yùn)用完全平方式是非負(fù)性這一性質(zhì)增加問題的條件,這種解題方法叫做配方法.配方法在代數(shù)式求值,解方程,最值問題等都有著廣泛的應(yīng)用.
例如:①用配方法因式分解:a2+6a+8
原式=a2+6a+9-1
=(a+3)2 –1
=(a+3-1)(a+3+1)
=(a+2)(a+4)
②若M=a2-2ab+2b2-2b+2,利用配方法求M的最小值:
a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1
=(a-b)2+(b-1)2 +1
∵(a-b)2≥0,(b-1)2 ≥0
∴當(dāng)a=b=1時(shí),M有最小值1
請(qǐng)根據(jù)上述材料解決下列問題:
(1)在橫線上添上一個(gè)常數(shù)項(xiàng)使之成為完全平方式:a 2+4a+ .
(2)用配方法因式分解: a2-24a+143
(3)若M=a2+2a +1,求M的最小值.
(4)已知a2+b2+c2-ab-3b-4c+7=0,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長(zhǎng)為半徑作弧,分別交AB,AD于點(diǎn)M,N;②分別以M,N為圓心,以大于 MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P;③作AP射線,交邊CD于點(diǎn)Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DBE中,BC=BE,還需要添加兩個(gè)條件才能使△ABC≌△DBE,則不能添加的一組條件是( )
A. AC=DE,∠C=∠E B. BD=AB,AC=DE C. AB=DB,∠A=∠D D. ∠C=∠E,∠A=∠D
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com