【題目】如圖,等邊與正方形重疊,其中,兩點分別在,上,且,若,,則的面積為( )
A. 1B.
C. 2D.
【答案】C
【解析】
過F作FQ⊥BC于Q,根據(jù)等邊三角形的性質(zhì)和判定和正方形的性質(zhì)求出BE=2,∠BED=60°,∠DEF=90°,EF=2,求出∠FEQ,求出CE和FQ,即可求出答案.
過F作FQ⊥BC于Q,則∠FQE=90°.
∵△ABC是等邊三角形,AB=6,∴BC=AB=6,∠B=60°.
∵BD=BE,DE=2,∴△BED是等邊三角形,且邊長為2,∴BE=DE=2,∠BED=60°,∴CE=BC﹣BE=4.
∵四邊形DEFG是正方形,DE=2,∴EF=DE=2,∠DEF=90°,∴∠FEC=180°﹣60°﹣90°=30°,∴QFEF=1,∴△EFC的面積為CEFQ4×1=2.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校260名學(xué)生參加植樹活動,要求每人植4~7棵,活動結(jié)束后隨機抽查了若干名學(xué)生每人的植樹量,并分為四種類型, A:4棵;B:5棵;C:6棵;D:7棵,將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),請回答下列問題:
(1)在這次調(diào)查中D類型有多少名學(xué)生?
(2)寫出被調(diào)查學(xué)生每人植樹量的眾數(shù)、中位數(shù);
(3)求被調(diào)查學(xué)生每人植樹量的平均數(shù),并估計這260名學(xué)生共植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定兩數(shù)a、b之間的一種運算,記作(a,b):如果,那么(a,b)=c.
例如:因為,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:
(5,125)= ,(-2,4)= ,(-2,-8)= ;
(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象:,他給出了如下的證明:
設(shè),則,即
∴,即,
∴.
請你嘗試運用上述這種方法說明下面這個等式成立的理由.
(4,5)+(4,6)=(4,30)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知、、三點在同一條直線上,平分,平分.
(1)若,求;
(2)若,求;
(3)是否隨的度數(shù)的變化而變化?如果不變,度數(shù)是多少?請你說明理由,如果變化,請說明如何變化.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車廠一周計劃生產(chǎn)150輛自行車,平均每天生產(chǎn)輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)根據(jù)記錄可知前三天共生產(chǎn) 輛;
(2)產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn) 輛;
(3)該廠實行計劃工資制,每輛車元,超額完成任務(wù)每輛獎元,少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要得到AB∥CD,只需要添加一個條件,這個條件不可以是( )
A. ∠1=∠3 B. ∠B+∠BCD=180°
C. ∠2=∠4 D. ∠D+∠BAD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB,AC是兩條繞點A可以自由旋轉(zhuǎn)的線段(但點A,B,C始終不在同一條直線上),已知AB=5,AC=7,點D,E分別是AB,BC的中點,則四邊形BEFD面積的最大值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=8,AC=6.點D在邊AB上,AD=4.5.△ABC的角平分線AE交CD于點F.
(1)求證:△ACD∽△ABC;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,在矩形ABCD中,點E是AD上的一個動點,連接BE,作點A關(guān)于BE的對稱點F,且點F落在矩形ABCD的內(nèi)部,連結(jié)AF,BF,EF,過點F作GF⊥AF交AD于點G,設(shè) =n.
(1)求證:AE=GE;
(2)當(dāng)點F落在AC上時,用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點F,C,G為頂點的三角形是直角三角形,求n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com