(2004•杭州)如圖,三個半徑為的圓兩兩外切,且△ABC的每一邊都與其中的兩個圓相切,那么△ABC的周長是( )

A.12+6
B.18+6
C.18+12
D.12+12
【答案】分析:從各圓心向邊作垂線,由題意知△ABC是等邊三角形,BD是∠EBF的平分線,可求得BE=BF=DEcot30°=3,AW=AS=CG=CH=3;再根據(jù)四邊形WFDR,SGTR,THED是矩形,WF=SG=EH=DT=2,從而求得△ABC的周長.
解答:解:如圖.連接AR、RS、RW、DF、DE,由題意知,△ABC是等邊三角形,∠EDB=60°,BD是∠EBF的平分線,
∴∠DBE=30°,BE=BF=DEcot30°=3,
同理,AW=AS=CG=CH=3,四邊形WFDR,SGTR,THED是矩形,WF=SG=EH=DT=2,
∴△ABC的周長=6BE+3EH=18+6
故選B.
點評:本題考查了切線長定理、等邊三角形的判定和性質(zhì)等知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:填空題

(2004•杭州)如圖,過點P引圓的兩條割線PAB和PCD,分別交圓于點A,B和C,D,連接AC,BD,則在下列各比例式中,①;②;③,成立的有    (把你認(rèn)為成立的比例式的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圖形的相似》(01)(解析版) 題型:選擇題

(2004•杭州)如圖,E,F(xiàn),G,H分別是正方形ABCD各邊的中點,要使中間陰影部分小正方形的面積是5,那么大正方形的邊長應(yīng)該是( )

A.
B.
C.5
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圓》(04)(解析版) 題型:選擇題

(2004•杭州)如圖,三個半徑為的圓兩兩外切,且△ABC的每一邊都與其中的兩個圓相切,那么△ABC的周長是( )

A.12+6
B.18+6
C.18+12
D.12+12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年浙江省杭州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2004•杭州)如圖,過點P引圓的兩條割線PAB和PCD,分別交圓于點A,B和C,D,連接AC,BD,則在下列各比例式中,①;②;③,成立的有    (把你認(rèn)為成立的比例式的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年浙江省杭州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2004•杭州)如圖為羽毛球單打場地按比例縮小的示意圖(由圖中粗實線表示),它的寬度為5.18米,那么它的長大約在( )

A.12米至13米之間
B.13米至14米之間
C.14米至15米之間
D.15米至16米之間

查看答案和解析>>

同步練習(xí)冊答案