【題目】如圖,在□ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=OB,E為AC上一點(diǎn),BE平分∠ABO,EF⊥BC于點(diǎn)F,∠CAD=45°,EF交BD于點(diǎn)P,BP=,則BC的長(zhǎng)為_______.
【答案】4
【解析】
過點(diǎn)E作EM∥AD,由△ABO是等腰三角形,根據(jù)三線合一可知點(diǎn)E是AO的中點(diǎn),可證得EM=AD=BC,根據(jù)已知可求得∠CEF=∠ECF=45°,從而得∠BEF=45°,△BEF為等腰直角三角形,可得BF=EF=FC=BC,因此可證明△BFP≌△MEP(AAS),則EP=FP=FC,在Rt△BFP中,利用勾股定理可求得x,即得答案.
過點(diǎn)E作EM∥AD,交BD于M,設(shè)EM=x,
∵AB=OB,BE平分∠ABO,
∴△ABO是等腰三角形,點(diǎn)E是AO的中點(diǎn),BE⊥AO,∠BEO=90°,
∴EM是△AOD的中位線,
又∵ABCD是平行四邊形,
∴BC=AD=2EM=2x,
∵EF⊥BC, ∠CAD=45°,AD∥BC,
∴∠BCA=∠CAD=45°,∠EFC=90°,
∴△EFC為等腰直角三角形,
∴EF=FC,∠FEC=45°,
∴∠BEF=90°-∠FEC=45°,
則△BEF為等腰直角三角形,
∴BF=EF=FC=BC=x,
∵EM∥BF,
∴∠EMP=∠FBP,∠PEM=∠PFB=90°,EM=BF,
則△BFP≌△MEP(ASA),
∴EP=FP=EF=FC=x,
∴在Rt△BFP中,,
即:,
解得:,
∴BC=2=4,
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+m交雙曲線y=(x>0)于A、B兩點(diǎn),交x軸于點(diǎn)C,交y軸于點(diǎn)D,過點(diǎn)A作AH⊥x軸于點(diǎn)H,連結(jié)BH,若OH:HC=1:5,S△ABH=1,則k的值為( 。
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在8×8的正方形網(wǎng)格中,△ABC的頂點(diǎn)在邊長(zhǎng)為1的小正方形的頂點(diǎn)上
(1) 填空∠ABC=___________
(2) 若點(diǎn)A在網(wǎng)格所在的坐標(biāo)平面內(nèi)的坐標(biāo)為(1,-2),請(qǐng)建立平面直角坐標(biāo)系,D是平面直角坐標(biāo)系中一點(diǎn),并作出以A、B、C、D四個(gè)點(diǎn)為頂點(diǎn)的平行四邊形,直接寫出滿足條件的D點(diǎn)的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(-4,m),B(-1,n),平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E、F分別在AD、CD上,AF、BE相交于點(diǎn)G,且AF=BE,則下列結(jié)論不正確的是:( )
A.AF⊥BEB.BG=GFC.AE=DFD.∠EBC=∠AFD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);
②a=1;
③當(dāng)x=0時(shí),y2﹣y1=4;
④2AB=3AC;
其中正確結(jié)論是( )
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0)。
(1)求點(diǎn)B的坐標(biāo);
(2)已知,C為拋物線與y軸的交點(diǎn)。
①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);
②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,O是對(duì)角線AC的中點(diǎn).將ABCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°.旋轉(zhuǎn)后的四邊形為A'B′C′D',點(diǎn)A,C,D,O的對(duì)應(yīng)點(diǎn)分別為A′,C',D',O’,若AB=8,BC=10,則線段CO’的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com