【題目】小強(qiáng)騎車(chē)從家到學(xué)校要經(jīng)過(guò)一段先上坡后下坡的路,在這段路上小強(qiáng)騎車(chē)的距離s(千米)與騎車(chē)的時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示,請(qǐng)根據(jù)圖中信息回答下列問(wèn)題:

(1)小強(qiáng)去學(xué)校時(shí)下坡路長(zhǎng) 千米;

(2)小強(qiáng)下坡的速度為 千米/分鐘;

(3)若小強(qiáng)回家時(shí)按原路返回,且上坡的速度不變,下坡的速度也不變,那么回家騎車(chē)走這段路的時(shí)間是 分鐘.

【答案】12(2)0.5(3)14

【解析】

1)根據(jù)題意和函數(shù)圖象可以得到下坡路的長(zhǎng)度;

2)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求的小強(qiáng)下坡的速度;

3)根據(jù)題意可以求得小強(qiáng)上坡的速度,進(jìn)而求得小強(qiáng)返回時(shí)需要的時(shí)間.

1)由題意和圖象可得:小強(qiáng)去學(xué)校時(shí)下坡路為:31=2(千米).

故答案為:2;

2)小強(qiáng)下坡的速度為:2÷(106=0.5千米/分鐘.

故答案為:0.5;

3)小強(qiáng)上坡時(shí)的速度為:1÷6=千米/分鐘,故小強(qiáng)回家騎車(chē)走這段路的時(shí)間是:=14(分鐘).

故答案為:14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠E∠F90°∠B∠C,AEAF.有以下結(jié)論:①EMFN;②CDDN③∠FAN∠EAM;④△ACN≌△ABM.其中正確的有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次大型活動(dòng),組委會(huì)啟用無(wú)人機(jī)航拍活動(dòng)過(guò)程,在操控?zé)o人機(jī)時(shí)應(yīng)根據(jù)現(xiàn)場(chǎng)狀況調(diào)節(jié)高度,已知無(wú)人機(jī)在上升和下降過(guò)程中速度相同,設(shè)無(wú)人機(jī)的飛行高度h(米)與操控?zé)o人機(jī)的時(shí)間t(分鐘)之間的關(guān)系如圖中的實(shí)線(xiàn)所示,根據(jù)圖象回答下列問(wèn)題:

1)圖中的自變量是______,因變量是______;

2)無(wú)人機(jī)在75米高的上空停留的時(shí)間是______分鐘;

3)在上升或下降過(guò)程中,無(wú)人機(jī)的速度______為米/分;

4)圖中a表示的數(shù)是______b表示的數(shù)是______;

5)圖中點(diǎn)A表示______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn) ,均在雙曲線(xiàn)上,下列說(shuō)法中錯(cuò)誤的是(

A.,則B.,則

C.,則D.,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C是半圓O上的一點(diǎn),AC平分∠DAB,ADCD,垂足為D,AD交⊙O 于E,連接CE.(1)求證:CD 是⊙O 的切線(xiàn)

(2)若E是弧AC的中點(diǎn),⊙O 的半徑為1,求圖中陰影部分的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E點(diǎn)為DF上的點(diǎn),BAC上的點(diǎn),∠1=∠2,∠C=∠D

試說(shuō)明:AC∥DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在離水面高度為5m的岸上有人用繩子拉船靠岸,開(kāi)始繩子與水面的夾角為30°,此人以每秒0.5m的速度收繩.

(1)8秒后船向岸邊移動(dòng)了多少米?

(2)寫(xiě)出還沒(méi)收的繩子的長(zhǎng)度S米與收繩時(shí)間t秒的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A是反比例函數(shù)y=k≠0圖象上一點(diǎn),ABx軸于B點(diǎn),一次函數(shù)y=ax+ba≠0)的圖象交y軸于D0,-2),交x軸于C點(diǎn),并與反比例函數(shù)的圖象交于A,E兩點(diǎn),連接OA,若AOD的面積為4,且點(diǎn)COB中點(diǎn).

1)分別求雙曲線(xiàn)及直線(xiàn)AE的解析式;

2)若點(diǎn)Q在雙曲線(xiàn)上,且SQAB=4SBAC,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法不能得到直角三角形的(

A.三個(gè)角度之比為 123 的三角形B.三個(gè)邊長(zhǎng)之比為 345 的三角形

C.三個(gè)邊長(zhǎng)之比為 81617 的三角形D.三個(gè)角度之比為 112 的三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案