【題目】(1)把左右兩邊計(jì)算結(jié)果相等的式子用線(xiàn)連接起來(lái):

1

1

1

1

(2)觀察上面計(jì)算結(jié)果相等的各式之間的關(guān)系,可歸納得出:1______

(3)利用上述規(guī)律計(jì)算下式的值:(1-)×(1-)×(1-)×…×(1-)×(1-)

【答案】(1)見(jiàn)解析;(2);(3).

【解析】

1)根據(jù)有理數(shù)的乘法和乘方運(yùn)算分別計(jì)算結(jié)果可得;

2)根據(jù)以上表格中的計(jì)算結(jié)果可得;

3)根據(jù)以上規(guī)律,將原式裂項(xiàng)、約分即可得.

(1)把左右兩邊計(jì)算結(jié)果相等的式子用線(xiàn)連接起來(lái):

1

1

1

1

(2)觀察上面計(jì)算結(jié)果相等的各式之間的關(guān)系,可歸納得出:,

故答案為:

(3)原式=(1+)(1-)×(1+)(1-)×(1+)(1-)×…×(1+)(1-)×(1+)×(1-)

=××××××…××

=×

=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線(xiàn)EF分別交AC,AB邊于E,F點(diǎn)若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線(xiàn)段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(m+1)x+m2=0,當(dāng)m取何值時(shí),方程有兩個(gè)實(shí)數(shù)根?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若點(diǎn)P在線(xiàn)段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2= °;

(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間有何關(guān)系?說(shuō)明理由

(3)若點(diǎn)P在Rt△ABC斜邊BA的延長(zhǎng)線(xiàn)上運(yùn)動(dòng)(CE<CD),則∠α、∠1、∠2之間有何關(guān)系?猜想并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 ,在射線(xiàn) 上取點(diǎn) ,以 為圓心的圓與 相切;在射線(xiàn) 上取點(diǎn) ,以 為圓心, 為半徑的圓與 相切;在射線(xiàn) 上取點(diǎn) ,以 為圓心, 為半徑的圓與 相切; ;在射線(xiàn) 上取點(diǎn) ,以 為圓心, 為半徑的圓與 相切.若 的半徑為 ,則 的半徑長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點(diǎn),連接AE、BE,BEAE,延長(zhǎng)AEBC的延長(zhǎng)線(xiàn)于點(diǎn)F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OAOC,OBOD,下面結(jié)論中,其中說(shuō)法正確的是( 。


①∠AOB=COD;
②∠AOB+COD=90°;
③∠BOC+AOD=180°;
④∠AOC-COD=BOC.

A①②③

B①②④

C①③④

D②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,⊙O(圓心O在△ABC內(nèi)部)經(jīng)過(guò)B、C兩點(diǎn),交AB于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線(xiàn)交AC于點(diǎn)F.延長(zhǎng)CO交AB于點(diǎn)G,作ED∥AC交CG于點(diǎn)D

(1)求證:四邊形CDEF是平行四邊形;
(2)若BC=3,tan∠DEF=2,求BG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)被分成4個(gè)相同的扇形,顏色分為紅、綠、黃三種,指針的位置固定,轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后任其自由停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢茫ㄖ羔樦赶騼蓚(gè)扇形的交線(xiàn)時(shí),當(dāng)作指向右邊的扇形),求下列事件的概率:

(1)指針指向綠色;

(2)指針指向紅色或黃色;

(3)指針不指向紅色.

查看答案和解析>>

同步練習(xí)冊(cè)答案