【題目】如圖,AB是⊙O的一條弦,且AB=.點C,E分別在⊙O上,且OC⊥AB于點D,∠E=30°,連接OA.
(1)求OA的長;
(2)若AF是⊙O的另一條弦,且點O到AF的距離為,直接寫出∠BAF的度數(shù).
【答案】(1)OA=4;(2)∠BAF的度數(shù)是75°或15°.
【解析】
試題分析:(1)根據(jù)垂徑定理求出AD的長,根據(jù)圓周角定理求出∠AOD的度數(shù),運用正弦的定義解答即可;
(2)作OH⊥AF于H,根據(jù)勾股定理和等腰直角三角形的性質求出∠OAF的度數(shù),分情況計算即可.
試題解析:(1)∵OC⊥AB,AB=,∴AD=DB=,∵∠E=30°,
∴∠AOD=60°,∠OAB=30°,∴OA=4;
(2)如圖,作OH⊥AF于H,∵OA=4,OH=,∴∠OAF=45°,
∴∠BAF=∠OAF+∠OAB=75°,
則∠BAF′=∠OAF′﹣∠OAB=15°,
∴∠BAF的度數(shù)是75°或15°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果點M以3厘米/秒的速度運動.
(1)如果點M在線段CB上由點C向點B運動,點N在線段BA上由B點向A點運動.它們同時出發(fā),若點N的運動速度與點M的運動速度相等.
①經(jīng)過2秒后,△BMN和△CDM是否全等?請說明理由.
②當兩點的運動時間為多少時,△BMN是一個直角三角形?
(2)若點N的運動速度與點M的運動速度不相等,點N從點B出發(fā),點M以原來的運動速度從點C同時出發(fā),都順時針沿△ABC三邊運動,經(jīng)過25秒點M與點N第一次相遇,則點N的運動速度是 厘米/秒.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式計算正確的是( )
A.2a2+3a2=5a4
B.(﹣2ab)3=﹣6ab3
C.(3a+b)(3a﹣b)=9a2﹣b2
D.a3(﹣2a)=﹣2a3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)﹣4÷ ﹣(﹣ )×(﹣30)
(2)﹣20+(﹣14)﹣(﹣18)﹣13
(3)﹣22+|5﹣8|+24÷(﹣3)×
(4)﹣5m2n+4mn2﹣2mn+6m2n+3mn.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點D、E,過點D作DF⊥BC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若等邊三角形ABC的邊長為4,求DF的長;
(3)寫出求圖中陰影部分的面積的思路.(不求計算結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC的斜邊BC上截取CD=CA,過點D作DE⊥BC,交AB于E,則下列結論一定正確的是( 。
A. AE=BE B. DB=DE C. AE=BD D. ∠BCE=∠ACE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com