【題目】如圖,BD是△ABC的角平分線,過點D作DE∥BC交AB于點E, DF∥AB交BC于點F .
(1)求證:四邊形BEDF是菱形
(2)如果∠A=80°,∠C=30°,求∠BDE的度數(shù).
【答案】(1)見詳解;(2)35°
【解析】
(1)由題意可證BE=DE,四邊形BEDF是平行四邊形,即可證四邊形BEDF為菱形;
(2)由三角形內(nèi)角和定理求出∠ABC=70°,由菱形的性質即可得出答案.
(1)證明:∵DE∥BC,DF∥AB,
∴四邊形DEBF是平行四邊形,
∵DE∥BC,
∴∠EDB=∠DBF,
∵BD平分∠ABC,
∴∠ABD=∠DBF=∠ABC
∴∠ABD=∠EDB
∴DE=BE且四邊形BEDF為平行四邊形
∴四邊形BEDF為菱形;
(2)解:∵∠A=80°,∠C=30°,
∴∠ABC=180°-80°-30°=70°,
∵四邊形BEDF為菱形,
∴∠EDF=∠ABC=70°,∠BDE=∠EDF=35°.
科目:初中數(shù)學 來源: 題型:
【題目】矩形的對角線所成的角之一是65°,則對角線與各邊所成的角度是( 。
A. 57.5° B. 32.5° C. 57.5°,23.5° D. 57.5°,32.5°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1: ,高為DE,在斜坡下的點C處測得樓頂B的仰角為64°,在斜坡上的點D處測得樓頂B的仰角為45°,其中A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結論的選項是( )
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,平行四邊形ABCD和平行四邊形CDEF有公共邊CD,邊AB和EF在同一條直線上,AC⊥CD且AC=AF,過點A作AH⊥BC交CF于點G,交BC于點H,連接EG.
(1)若AE=2,CD=5,則△BCF的面積為 ;△BCF的周長為 ;
(2)求證:BC=AG+EG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉淇準備完成題目:化簡:,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說:“你猜錯了,我看到該題標準答案的結果是常數(shù).”通過計算說明原題中“”是幾?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A,B兩點在數(shù)軸上,點A在原點O的左邊,表示的數(shù)為﹣10,點B在原點的右邊,且BO=3AO.點M以每秒3個單位長度的速度從點A出發(fā)向右運動.點N以每秒2個單位長度的速度從點O出發(fā)向右運動(點M,點N同時出發(fā)).
(1)數(shù)軸上點B對應的數(shù)是 ,點B到點A的距離是 ;
(2)經(jīng)過幾秒,原點O是線段MN的中點?
(3)經(jīng)過幾秒,點M,N分別到點B的距離相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=- x2+bx+c與x軸交于點A(-1,0)和B,與y軸交于點C(0,3).
(1)求此拋物線的解析式及點B的坐標;
(2)設拋物線的頂點為D,連接CD、DB、CB、AC.
①求證:△AOC∽△DCB;②在坐標軸上是否存在與原點O不重合的點P,使以P、A、C為頂點的三角形與△DCB相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com