16、如圖在△ABC中,AC=7,DE是AB的垂直平分線,若BC=5,△BCE的周長是
12
分析:根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可以得到AE=BE,所以△BCE的周長等于邊AC與BC的和.
解答:解:∵DE是AB的垂直平分線,
∴AE=BE,
∵AC=7,BC=5,
∴△BCE的周長=BC+CE+BE
=BC+AC
=5+7
=12.
點評:本題主要考查線段垂直平分線的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖在△ABC中,∠ACB=90°,CD是邊AB上的高.那么圖中與∠A相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在△ABC中,∠ABC=50°,∠ACB=75°,點O是內(nèi)心,則∠BOC的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG平分∠CDE,DC=AE,
求證:CG=EG.
證明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB邊上的中線
∴E是AB的中點
∴DE=
1
2
AB
1
2
AB
(直角三角形斜邊上的中線等于斜邊的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三線合一
等腰三角形三線合一

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的兩點,則圖中陰影部分的面積是
20
20

查看答案和解析>>

同步練習(xí)冊答案