【題目】已知拋物線y=x2+kx+2k﹣4
(1)當k=2時,求出此拋物線的頂點坐標;
(2)求證:無論k為任何實數(shù),拋物線都與x軸有交點,且經(jīng)過x軸一定點;
(3)已知拋物線與x軸交于A(x1,0)、B(x2,0)兩點(A在B的左邊),|x1|<|x2|,與y軸交于C點,且S△ABC=15.問:過A,B,C三點的圓與該拋物線是否有第四個交點?試說明理由.如果有,求出其坐標.
【答案】(1)頂點坐標為(﹣1,﹣1).(2)證明見解析;(3)(1,﹣6).
【解析】解:(1)當=2時,拋物線為=+,…………………………1分
配方: =+=++1-1
得=-1,
∴頂點坐標為(-1,-1);………………………………………………3分
(也可由頂點公式求得)
(2)令=0,有++-4=0,………………………………4分
此一元二次方程根的判別式
⊿=-4·(-4)=-+16=,…………………5分
∵無論為什么實數(shù), ≥0,
方程++-4=0都有解,…………………………………………6分
即拋物線總與軸有交點.
由求根公式得=,………………………………………………7分
當≥4時, =,
1==-2, 2==-+2;
當<4時, =,
1==-+2, 2==-2.
即拋物線與軸的交點分別為(-2,0)和(-+2,0),
而點(-2,0)是軸上的定點;…………………………………………8分
(3)過A,B,C三點的圓與該拋物線有第四個交點.…………………9分
設(shè)此點為D.∵| 1|<| 2|,C點在y軸上,
由拋物線的對稱,可知點C不是拋物線的頂點.……………………………10分
由于圓和拋物線都是軸對稱圖形,
過A、B、C三點的圓與拋物線組成一個軸對稱圖形.……………………11分
∵軸上的兩點A、B關(guān)于拋物線對稱軸對稱,
∴過A、B、C三點的圓與拋物線的第四個
交點D應(yīng)與C點關(guān)于拋物線對稱軸對稱.……………………………………12分
由拋物線與軸的交點分別為(-2,0)和(-+2,0):
當-2<-+2,即<4時,…………………………13分
A點坐標為(-2,0),B為(-+2,0).
即1=-2, 2=-+2.
由| 1|<| 2|得-+2>2,解得<0.
根據(jù)S△ABC=15,得AB·OC=15.
AB=-+2-(-2)=4-,
OC=|2-4|=4-2,
∴(4-)(4-2)=15,
化簡整理得=0,
解得=7(舍去)或=-1.
此時拋物線解析式為=,
其對稱軸為=,C點坐標為(0,-6),
它關(guān)于=的對稱點D坐標為(1,-6);………………………………14分
當-2>-+2,由A點在B點左邊,
知A點坐標為(-+2,0),B為(-2,0).
即1=-+2, 2=-2.
但此時| 1|>| 2|,這與已知條件| 1|<| 2|不相符,
∴不存在此種情況.
故第四個交點的坐標為(1,-6).
(如圖6)
(1)把=2代入拋物線,通過配方可求得此拋物線的頂點坐標
(2)令y=0,解方程++-4,即可求出拋物線與x軸兩交點的橫坐標,定點為與k值無關(guān)的點;
(3)過A、B、C三點的圓與拋物線有第四個交點D,根據(jù)A、B、C三點坐標,討論k的范圍,表示△ABC的面積,列方程求k,再根據(jù)對稱性求D點坐標
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,一次函數(shù)y=kx+3的圖象經(jīng)過點A(1,4).
(1)求這個一次函數(shù)的解析式;
(2)試判斷點B(-1,5),C(0,3),D(2,1)是否在這個一次函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣3,2)、B(﹣2,1)兩點,現(xiàn)將線段AB進行平移,使點A移到坐標原點,則此時點B的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.﹣1的相反數(shù)是1
B.﹣1的倒數(shù)是1
C.﹣1的平方根是1
D.﹣1的立方根是1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC的三條邊BC=,CA=,AB=,D為△ABC內(nèi)一點,且∠ADB=∠BDC=∠CDA=120°,DA=,DB=,DC=.
(1)若∠CDB=18°,則∠BCD= °;
(2)將△ACD繞點A順時針方向旋轉(zhuǎn)90°到,畫出,若∠CAD=20°,求度數(shù);
(3)試畫出符合下列條件的正三角形:M為正三角形內(nèi)的一點,M到正三角形三個頂點的距離分別為、、,且正三角形的邊長為++,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國實施的“一帶一路”戰(zhàn)略方針,惠及沿途各國.中歐班列也已融入其中.從我國重慶開往德國的杜伊斯堡班列,全程約11025千米.同樣的貨物,若用輪船運輸,水路路程是鐵路路程的1.6倍,水路所用天數(shù)是鐵路所用天數(shù)的3倍,列車平均日速(平均每日行駛的千米數(shù))是輪船平均日速的2倍少49千米.分別求出列車及輪船的平均日速.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】橫跨深圳及香港之間的深圳灣大橋(ShenzhenBayBridge)是中國唯一傾斜的獨塔單索面橋,大橋全長4 770米,這個數(shù)字用科學(xué)記數(shù)法表示為(保留兩個有效數(shù)字)( )
A.47×102
B.4.7×103
C.4.8×103
D.5.0×103
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com