【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)B(2,n),過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)P(3n﹣4,1)是該反比例函數(shù)圖象上的一點(diǎn),且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達(dá)式.
【答案】解:∵點(diǎn)B(2,n)、P(3n﹣4,1)在反比例函數(shù)y= (x>0)的圖象上,
∴ .
解得:m=8,n=4.
∴反比例函數(shù)的表達(dá)式為y= .
∵m=8,n=4,
∴點(diǎn)B(2,4),(8,1).
過(guò)點(diǎn)P作PD⊥BC,垂足為D,并延長(zhǎng)交AB與點(diǎn)P′.
在△BDP和△BDP′中,
∴△BDP≌△BDP′.
∴DP′=DP=6.
∴點(diǎn)P′(﹣4,1).
將點(diǎn)P′(﹣4,1),B(2,4)代入直線的解析式得: ,
解得: .
∴一次函數(shù)的表達(dá)式為y= x+3
【解析】將點(diǎn)B(2,n)、P(3n﹣4,1)代入反比例函數(shù)的解析式可求得m、n的值,從而求得反比例函數(shù)的解析式以及點(diǎn)B和點(diǎn)P的坐標(biāo),過(guò)點(diǎn)P作PD⊥BC,垂足為D,并延長(zhǎng)交AB與點(diǎn)P′.接下來(lái)證明△BDP≌△BDP′,從而得到點(diǎn)P′的坐標(biāo),最后將點(diǎn)P′和點(diǎn)B的坐標(biāo)代入一次函數(shù)的解析式即可求得一次函數(shù)的表達(dá)式.本題主要考查的是一次函數(shù)和反比例函數(shù)的綜合應(yīng)用,根據(jù)題意列出方程組是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形ABCD的頂點(diǎn)A在第三象限,對(duì)角線AC的中點(diǎn)在坐標(biāo)原點(diǎn),一邊AB與x軸平行且AB=2,若點(diǎn)A的坐標(biāo)為(a,b),則點(diǎn)D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知|a+b|+|a-b|-2b=0,在數(shù)軸上給出關(guān)于a,b的四種位置關(guān)系如圖所示,則可能成立的有( 。
A. 1種 B. 2種 C. 3種 D. 4種
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,若∠A=∠D,CD=3,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點(diǎn),拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過(guò)點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)M是拋物線上的一個(gè)動(dòng)點(diǎn),并且點(diǎn)M在第一象限內(nèi),連接AM、BM,設(shè)點(diǎn)M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時(shí),動(dòng)點(diǎn)M相應(yīng)的位置記為點(diǎn)M′.
①寫出點(diǎn)M′的坐標(biāo);
②將直線l繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時(shí)停止旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,直線l′與線段BM′交于點(diǎn)C,設(shè)點(diǎn)B、M′到直線l′的距離分別為d1、d2 , 當(dāng)d1+d2最大時(shí),求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解下列方程,其中應(yīng)在方程的左右兩邊同時(shí)加上4的是( )
A. -2x=5
B. +4x=5
C. +2x=5
D.2 -4x=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在長(zhǎng)方形中,AB=4cm,BC=6cm,點(diǎn)為中點(diǎn),如果點(diǎn)在線段上以每秒2cm的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).設(shè)點(diǎn)運(yùn)動(dòng)時(shí)間為秒,若某一時(shí)刻△BPE與△CQP全等,求此時(shí)的值及點(diǎn)的運(yùn)動(dòng)速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)三角形三個(gè)內(nèi)角的度數(shù)分別為x,y,z,如果其中一個(gè)角的度數(shù)是另一個(gè)角的度數(shù)的2倍,那么我們稱數(shù)對(duì)(y,z)(y≤z)是x的和諧數(shù)對(duì).例:當(dāng)x=150°時(shí),對(duì)應(yīng)的和諧數(shù)對(duì)有一個(gè),它為(10,20);當(dāng)x=66時(shí),對(duì)應(yīng)的和諧數(shù)對(duì)有二個(gè),它們?yōu)?/span>(33,81),(38,76).當(dāng)對(duì)應(yīng)的和諧數(shù)對(duì)(y,z)有三個(gè)時(shí),此時(shí)x的取值范圍是____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com