精英家教網 > 初中數學 > 題目詳情
若四邊形ABCD與四邊形A′B′C′D′關予點O成中心對稱,若∠A=80°,AB=7cm,CO=9cm,則∠A′=______,A′B′=______cm,CC′=______cm.
∵四邊形ABCD與四邊形A′B′C′D′關予點O成中心對稱,
∴∠A'=∠A=80°,A'B'=AB=7cm,CC'=CO+OC'=2CO=18cm.
故答案為:80°、7cm、18cm.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(1)如圖1,在△ABC中,若E、F分別是AB、BC的中點,則EF與AC的數量關系和位置關系分別為:
 
;
(2)如圖2,任意四邊形ABCD中,E、F、G、H分別是四條邊的中點,則四邊形EFGH的形狀是
 
,并說明理由;
(3)若四邊形ABCD是矩形,則連接其四邊中點E、F、G、H,則四邊形EFGH的形狀是
 
,若四邊形ABCD是菱形,連接其四邊中點E、F、G、H,則四邊形EFGH的形狀是
 

(4)圖2中,若四邊形.EFGH是矩形,則四邊形ABCD應滿足的條件是
 

精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

某課題研究小組就圖形面積問題進行專題研究,他們發(fā)現如下結論:
(1)有一條邊對應相等的兩個三角形面積之比等于這條邊上的對應高之比;
(2)有一個角對應相等的兩個三角形面積之比等于夾這個角的兩邊乘積之比;

現請你繼續(xù)對下面問題進行探究,探究過程可直接應用上述結論.(S表示面積)
精英家教網
問題1:如圖1,現有一塊三角形紙板ABC,P1,P2三等分邊AB,R1,R2三等分邊AC.經探究知S四邊形P1P2R2R1=
13
S△ABC,請證明.
問題2:若有另一塊三角形紙板,可將其與問題1中的拼合成四邊形ABCD,如圖2,Q1,Q2三等分邊DC.請?zhí)骄?span id="kkcgn7f" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">S四邊形P1Q1Q2P2與S四邊形ABCD之間的數量關系.
問題3:如圖3,P1,P2,P3,P4五等分邊AB,Q1,Q2,Q3,Q4五等分邊DC.若S四邊形ABCD=1,求S四邊形P2Q2Q3P3
問題4:如圖4,P1,P2,P3四等分邊AB,Q1,Q2,Q3四等分邊DC,P1Q1,P2Q2,P3Q3將四邊形ABCD分成四個部分,面積分別為S1,S2,S3,S4.請直接寫出含有S1,S2,S3,S4的一個等式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如果四邊形中一對頂點到另一對頂點所連對角線的距離相等,則把這對頂點叫做這個四邊形的一對等高點.
例如:如圖1,平行四邊形ABCD中,可證點A、C到BD的距離相等,所以點A、C是平行四邊形ABCD的一對等高點,同理可知點B、D也是平行四邊形ABCD的一對等高點.
(1)已知平行四邊形ABCD,請你在兩個備用圖中分別畫出一個只有一對等高點的四邊ABCE,其中E點分別在四邊形ABCD的形內、形外(要求:畫出必要的輔助線);
(2)如圖2,P是四邊形ABCD對角線BD上任意一點(不與B、D點重合),S1、S2、S3、S4分別表示△ABP、△CBP、△ADP、△CDP的面積.若四邊形ABCD只有一對等高點A、C,S1、S2、S3、S4四者之間的等量關系如何?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,方格紙中四邊形ABCD的四個頂點均在格點上,將四邊形ABCD向右平移5格得到四邊形A1B1C1D1.再將四邊形A1B1C1D1,繞點A逆時針旋轉180°,得到四邊形A1B2C2D2
(1)在方格紙中畫出四邊形A1B1C1D1和四邊形A1B2C2D2
(2)四邊形ABCD與四邊形A1B2C2D2.是否成中心對稱?若成中心對稱,請畫出對稱中心;若不成中心對稱,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

在小正方形組成的15×15的網絡中,四邊形ABCD和四邊形A′B′C′D′的位置如圖所示.
(1)寫出四邊形ABCD四個頂點的坐標.
(2)現把四邊形ABCD向上平移兩格,向右平移三格,畫出相應的圖形A1B1C1D1
(3)若四邊形ABCD平移后,與四邊形A′B′C′D′成軸對稱,寫出滿足要求的一種平移方法,并畫出平移后的圖形A2B2C2D2

查看答案和解析>>

同步練習冊答案