【題目】如圖,直線l1:y=kx+b平行于直線y=x﹣1,且與直線l2 相交于點(diǎn)P(﹣1,0).

(1)求直線l1、l2的解析式;
(2)直線l1與y軸交于點(diǎn)A.一動(dòng)點(diǎn)C從點(diǎn)A出發(fā),先沿平行于x軸的方向運(yùn)動(dòng),到達(dá)直線l2上的點(diǎn)B1處后,改為垂直于x軸的方向運(yùn)動(dòng),到達(dá)直線l1上的點(diǎn)A1處后,再沿平行于x軸的方向運(yùn)動(dòng),到達(dá)直線l2上的點(diǎn)B2處后,又改為垂直于x軸的方向運(yùn)動(dòng),到達(dá)直線l1上的點(diǎn)A2處后,仍沿平行于x軸的方向運(yùn)動(dòng),…
照此規(guī)律運(yùn)動(dòng),動(dòng)點(diǎn)C依次經(jīng)過(guò)點(diǎn)B1 , A1 , B2 , A2 , B3 , A3 , …,Bn , An , …
①求點(diǎn)B1 , B2 , A1 , A2的坐標(biāo);
②請(qǐng)你通過(guò)歸納得出點(diǎn)An、Bn的坐標(biāo);并求當(dāng)動(dòng)點(diǎn)C到達(dá)An處時(shí),運(yùn)動(dòng)的總路徑的長(zhǎng)?

【答案】
(1)

解:∵y=kx+b平行于直線y=x﹣1,

∴y=x+b

∵過(guò)P(﹣1,0),

∴﹣1+b=0,

∴b=1

∴直線l1的解析式為y=x+1;

∵點(diǎn)P(﹣1,0)在直線l2上,

;

;

∴直線l2的解析式為


(2)

解:①A點(diǎn)坐標(biāo)為(0,1),

則B1點(diǎn)的縱坐標(biāo)為1,設(shè)B1(x1,1),

;

∴x1=1;

∴B1點(diǎn)的坐標(biāo)為(1,1);

則A1點(diǎn)的橫坐標(biāo)為1,設(shè)A1(1,y1

∴y1=1+1=2;

∴A1點(diǎn)的坐標(biāo)為(1,2),即(21﹣1,21);

同理,可得B2(3,2),A2(3,4),即(22﹣1,22);

②經(jīng)過(guò)歸納得An(2n﹣1,2n),Bn(2n﹣1,2n﹣1);

當(dāng)動(dòng)點(diǎn)C到達(dá)An處時(shí),運(yùn)動(dòng)的總路徑的長(zhǎng)為An點(diǎn)的橫縱坐標(biāo)之和再減去1,

即2n﹣1+2n﹣1=2n+1﹣2.


【解析】(1)根據(jù)直線l1:y=kx+b平行于直線y=x﹣1,求得k=1,再由與直線l2 相交于點(diǎn)P(﹣1,0),分別求出b和m的值.(2)由直線l1的解析式,求出A點(diǎn)的坐標(biāo),從而求出B1點(diǎn)的坐標(biāo),依此類(lèi)推再求得A1、B2、A2的值,從而得到An、Bn , 進(jìn)而求出點(diǎn)C運(yùn)動(dòng)的總路徑的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家具商場(chǎng)計(jì)劃購(gòu)進(jìn)某種餐桌、餐椅進(jìn)行銷(xiāo)售,有關(guān)信息如表:

原進(jìn)價(jià)(元/張)

零售價(jià)(元/張)

成套售價(jià)(元/套)

餐桌

a

270

500

餐椅

a﹣110

70

已知用600元購(gòu)進(jìn)的餐桌數(shù)量與用160元購(gòu)進(jìn)的餐椅數(shù)量相同.

(1)求表中a的值;

(2)若該商場(chǎng)購(gòu)進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過(guò)200張.該商場(chǎng)計(jì)劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷(xiāo)售,其余餐桌、餐椅以零售方式銷(xiāo)售.請(qǐng)問(wèn)怎樣進(jìn)貨,才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=﹣x+6與x,y軸分別交于A,B兩點(diǎn),點(diǎn)C(0,n)是y軸上一點(diǎn),把坐標(biāo)平面沿直線AC折疊,點(diǎn)B剛好落在x軸上,則點(diǎn)C的坐標(biāo)是( 。

A. (0,3) B. (0, C. (0, D. (0,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點(diǎn),過(guò)點(diǎn)D作⊙O的切線交BC于點(diǎn)M,切點(diǎn)為N,則DM的長(zhǎng)為(
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】65日是世界環(huán)境日,為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某市第一中學(xué)舉行了環(huán)保知識(shí)競(jìng)賽,參賽人數(shù)1000人,為了了解本次競(jìng)賽的成績(jī)情況,學(xué)校團(tuán)委從中抽取部分學(xué)生的成績(jī)(滿分為100分,得分取整數(shù))進(jìn)行統(tǒng)計(jì),并繪制出不完整的頻率分布表和不完整的頻數(shù)分布直方圖如下:

(1)直接寫(xiě)出a的值,并補(bǔ)全頻數(shù)分布直方圖.

分組

頻數(shù)

頻率

49.5~59.5

0.08

59.5~69.5

0.12

69.5~79.5

20

79.5~89.5

32

89.5~100.5

a

(2)若成績(jī)?cè)?/span>80分以上(含80分)為優(yōu)秀,求這次參賽的學(xué)生中成績(jī)?yōu)閮?yōu)秀的約為多少人?

(3)若這組被抽查的學(xué)生成績(jī)的中位數(shù)是80分,請(qǐng)直接寫(xiě)出被抽查的學(xué)生中得分為80分的至少有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下面一段文字,再回答后面的問(wèn)題.

已知在平面直角坐標(biāo)系內(nèi)兩點(diǎn)P1(x1,y1),P2(x2,y2),點(diǎn)P1,P2間的距離公式P1P2,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸上或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間的距離公式可簡(jiǎn)化為|x2-x1||y2-y1|.

(1)已知A(2,4),B(-3,-8),試求A,B兩點(diǎn)間的距離;

(2)已知各頂點(diǎn)坐標(biāo)為A(0,6),B(-3,2),C(3,2),你能判定ABC的形狀嗎?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A、FE、C在同一直線上,AB∥CD,∠ABE=∠CDFAF=CE

1)從圖中任找兩組全等三角形;

2)從(1)中任選一組進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣ 與x軸、y軸分別交于點(diǎn)A、B;點(diǎn)Q是以C(0,﹣1)為圓心、1為半徑的圓上一動(dòng)點(diǎn),過(guò)Q點(diǎn)的切線交線段AB于點(diǎn)P,則線段PQ的最小是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),沿著箭頭所示方向,每次移動(dòng)1個(gè)單位,依次得到點(diǎn)P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,則點(diǎn)P2018的坐標(biāo)是________

查看答案和解析>>

同步練習(xí)冊(cè)答案