【題目】如圖,AD是△ABC的中線,∠ADC=45°,把△ABC沿著直線AD對折,點C落在點E的位置,如果BC=12,那么線段BE的長度為(
A.12
B.12
C.6
D.4

【答案】C
【解析】解:根據(jù)折疊的性質(zhì)知,CD=ED,∠CDA=∠ADE=45°, ∴∠CDE=∠BDE=90°,
∵AD是△ABC的中線
∴BD=CD,BC=12,
∴BD=ED=6,
即△EDB是等腰直角三角形,
∴BE= BD= ×6=6 ,
故選C.
【考點精析】解答此題的關(guān)鍵在于理解翻折變換(折疊問題)的相關(guān)知識,掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC繞點A逆時針旋轉(zhuǎn)一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數(shù)為(
A.60°
B.75°
C.85°
D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:
(1)x2+2x﹣2=0
(2)3x2+4x﹣7=0
(3)(x+3)(x﹣1)=5
(4)(3﹣x)2+x2=9.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).

(1)把△ABC向上平移5個單位后得到對應(yīng)的△A1B1C1 , 畫出△A1B1C1 , 并寫出C1的坐標.
(2)以點B為位似中心在格紙內(nèi)畫出△A2BC2 , 且與△ABC的位似比為2:1,并寫出C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:①abc<0;②2a+b=0;③當x=﹣1或x=3時,函數(shù)y的值都等于0;④4a+2b+c>0,其中正確結(jié)論的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數(shù)根x1 , x2
(1)求m的取值范圍;
(2)當x12+x22=6x1x2時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A( ,0),B(0,4),則點B2014的橫坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果函數(shù)y=2x2﹣3ax+1,在自變量x的值滿足1≤x≤3的情況下,與其對應(yīng)的函數(shù)值y的最小值為﹣23,則a的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2015年,中國女排獲得第12屆世界杯冠軍,在女排訓練中,甲、乙、丙三位隊員進行戰(zhàn)術(shù)演練,排球從一個隊員隨機傳給另一個隊員,每位傳球隊員傳給其余兩個隊員的機會均等,但每位隊員都不允許連續(xù)兩次接觸拍排球.現(xiàn)在要求經(jīng)過兩次傳球(即經(jīng)過一傳、二傳)后,第三次觸球的隊員再將排球扣到對方場地.
(1)若由甲開始第一次傳球(即一傳),經(jīng)過第二次傳球(即二傳)后,最后排球還是由甲扣出的概率是多少?
(2)若三次觸球都是隨機的,求正好是甲、乙、丙分別承擔一傳、二傳和扣球任務(wù)的概率.

查看答案和解析>>

同步練習冊答案