【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);
(3)在第二問(wèn)的條件下,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請(qǐng)你直接寫(xiě)出所有滿足條件的點(diǎn)P的坐標(biāo).

【答案】
(1)

解:∵拋物線y=x2+bx+c經(jīng)過(guò)A(﹣1,0)、B(0,﹣3),

解得 ,

故拋物線的函數(shù)解析式為y=x2﹣2x﹣3;


(2)

解:令x2﹣2x﹣3=0,

解得x1=﹣1,x2=3,

則點(diǎn)C的坐標(biāo)為(3,0),

∵y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴點(diǎn)E坐標(biāo)為(1,﹣4),

設(shè)點(diǎn)D的坐標(biāo)為(0,m),作EF⊥y軸于點(diǎn)F,

∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12

∵DC=DE,

∴m2+9=m2+8m+16+1,

解得m=﹣1,

∴點(diǎn)D的坐標(biāo)為(0,﹣1);


(3)

解:

∵點(diǎn)C(3,0),D(0,﹣1),E(1,﹣4),

∴CO=DF=3,DO=EF=1,

根據(jù)勾股定理,CD= = = ,

在△COD和△DFE中,

,

∴△COD≌△DFE(SAS),

∴∠EDF=∠DCO,

又∵∠DCO+∠CDO=90°,

∴∠EDF+∠CDO=90°,

∴∠CDE=180°﹣90°=90°,

∴CD⊥DE,

①分OC與CD是對(duì)應(yīng)邊時(shí),

∵△DOC∽△PDC,

,

=

解得DP= ,

過(guò)點(diǎn)P作PG⊥y軸于點(diǎn)G,

,

,

解得DG=1,PG= ,

當(dāng)點(diǎn)P在點(diǎn)D的左邊時(shí),OG=DG﹣DO=1﹣1=0,

所以點(diǎn)P(﹣ ,0),

當(dāng)點(diǎn)P在點(diǎn)D的右邊時(shí),OG=DO+DG=1+1=2,

所以,點(diǎn)P( ,﹣2);

②OC與DP是對(duì)應(yīng)邊時(shí),

∵△DOC∽△CDP,

= ,

=

解得DP=3 ,

過(guò)點(diǎn)P作PG⊥y軸于點(diǎn)G,

解得DG=9,PG=3,

當(dāng)點(diǎn)P在點(diǎn)D的左邊時(shí),OG=DG﹣OD=9﹣1=8,

所以,點(diǎn)P的坐標(biāo)是(﹣3,8),

當(dāng)點(diǎn)P在點(diǎn)D的右邊時(shí),OG=OD+DG=1+9=10,

所以,點(diǎn)P的坐標(biāo)是(3,﹣10),

綜上所述,滿足條件的點(diǎn)P共有4個(gè),其坐標(biāo)分別為(﹣ ,0)、( ,﹣2)、(﹣3,8)、(3,﹣10).


【解析】(1)把點(diǎn)A、B的坐標(biāo)代入拋物線解析式,解方程組求出b、c的值,即可得解;(2)令y=0,利用拋物線解析式求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)D的坐標(biāo)為(0,m),作EF⊥y軸于點(diǎn)F,利用勾股定理列式表示出DC2與DE2 , 然后解方程求出m的值,即可得到點(diǎn)D的坐標(biāo);(3)根據(jù)點(diǎn)C、D、E的坐標(biāo)判定△COD和△DFE全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠EDF=∠DCO,然后求出CD⊥DE,再利用勾股定理求出CD的長(zhǎng)度,然后①分OC與CD是對(duì)應(yīng)邊;②OC與DP是對(duì)應(yīng)邊;根據(jù)相似三角形對(duì)應(yīng)邊成比例列式求出DP的長(zhǎng)度,過(guò)點(diǎn)P作PG⊥y軸于點(diǎn)G,再分點(diǎn)P在點(diǎn)D的左邊與右邊兩種情況,分別求出DG、PG的長(zhǎng)度,結(jié)合平面直角坐標(biāo)系即可寫(xiě)出點(diǎn)P的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為n的正方形OABC的邊OA、OC分別在x軸和y軸的正半軸上,A1、A2、A3、…、An1為OA的n等分點(diǎn),B1、B2、B3、…Bn1為CB的n等分點(diǎn),連接A1B1、A2B2、A3B3、…、An1Bn1 , 分別交(x≥0)于點(diǎn)C1、C2、C3、…、Cn1 , 當(dāng)B25C25=8C25A25時(shí),則n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為支援災(zāi)區(qū),某校愛(ài)心活動(dòng)小組準(zhǔn)備用籌集的資金購(gòu)買(mǎi)A、B兩種型號(hào)的學(xué)習(xí)用品共1000件.已知B型學(xué)習(xí)用品的單價(jià)比A型學(xué)習(xí)用品的單價(jià)多10元,用180元購(gòu)買(mǎi)B型學(xué)習(xí)用品的件數(shù)與用120元購(gòu)買(mǎi)A型學(xué)習(xí)用品的件數(shù)相同.
(1)求A、B兩種學(xué)習(xí)用品的單價(jià)各是多少元?
(2)若購(gòu)買(mǎi)這批學(xué)習(xí)用品的費(fèi)用不超過(guò)28000元,則最多購(gòu)買(mǎi)B型學(xué)習(xí)用品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,⊙A與x軸交于B(2,0)、C(8,0)兩點(diǎn),與y軸相切于點(diǎn)D,則點(diǎn)A的坐標(biāo)是( 。

A.(5,4)
B.(4,5)
C.(5,3)
D.(3,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB∥CD,AB≠CD,BD=AC.

(1)求證:AD=BC;
(2)若E、F、G、H分別是AB、CD、AC、BD的中點(diǎn),求證:線段EF與線段GH互相垂直平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年5月,某校組織了以“德潤(rùn)書(shū)香”為主題的電子小報(bào)制作比賽,評(píng)分結(jié)果只有60,70,80,90,100五種,現(xiàn)從中隨機(jī)抽取部分作品,對(duì)其份數(shù)和成績(jī)進(jìn)行整理,制成如下兩幅不完整的統(tǒng)計(jì)圖:

根據(jù)以上信息,解答下列問(wèn)題:
(1)求本次抽取了多少份作品,并補(bǔ)全兩幅統(tǒng)計(jì)圖;
(2)已知該校收到參賽作品共900份,比賽成績(jī)達(dá)到90分以上(含90分)的為優(yōu)秀作品,據(jù)此估計(jì)該校參賽作品中,優(yōu)秀作品有多少份?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+2經(jīng)過(guò)點(diǎn)A(﹣1,0)和點(diǎn)B(4,0),且與y軸交于點(diǎn)C,點(diǎn)D的坐標(biāo)為(2,0),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn),連接CA,CD,PD,PB.

(1)求該拋物線的解析式;
(2)當(dāng)△PDB的面積等于△CAD的面積時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)m>0,n>0時(shí),過(guò)點(diǎn)P作直線PE⊥y軸于點(diǎn)E交直線BC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥x軸于點(diǎn)G,連接EG,請(qǐng)直接寫(xiě)出隨著點(diǎn)P的運(yùn)動(dòng),線段EG的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.

(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長(zhǎng)BP交直線DQ于點(diǎn)E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖2,“六芒星”是由兩個(gè)全等正三角形組成,中心重合于點(diǎn)O且三組對(duì)邊分別平行.點(diǎn)A,B是“六芒星”(如圖1)的兩個(gè)頂點(diǎn),動(dòng)點(diǎn)P在“六芒星”上(內(nèi)部以及邊界),若 ,則x+y的取值范圍是(
A.[﹣4,4]
B.
C.[﹣5,5]
D.[﹣6,6]

查看答案和解析>>

同步練習(xí)冊(cè)答案