(2004•淮安)已知:兩個正整數(shù)的和與積相等,求這兩個正整數(shù).
解:不妨設(shè)這兩個正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,(*)
則ab=a+b≤b+b=2b,所以a≤2,
因為a為正整數(shù),所以a=1或2,
①當a=1時,代入等式(*),得1•b=1+b,b不存在;
②當a=2時,代入等式(*),得2•b=2+b,b=2.
所以這兩個正整數(shù)為2和2.
仔細閱讀以上材料,根據(jù)閱讀材料的啟示,思考是否存在三個正整數(shù),它們的和與積相等試說明你的理由.
【答案】分析:設(shè)出3個正整數(shù),得到等量關(guān)系abc=a+b+c,根據(jù)a≤b≤c,得到ab≤3,再判斷出a,b,c的整數(shù)值即可.
解答:解:假設(shè)存在三個正整數(shù),它們的和與積相等,
不妨設(shè)這三個正整數(shù)為a、b、c,且a≤b≤c,則abc=a+b+c(※)
所以abc=a+b+c≤c+c+c=3c,所以ab≤3,
若a≥2,則b≥a≥2,所以ab≥4,與ab≤3矛盾.
因此a=1,b=1或2或3,
①當a=1,b=1時,代入等式(※)得1+1+c=1•1•c,c不存在.
②當a=1,b=2時,代入等式(※)得1+2+c=1•2•c,c=3.
③當a=1,b=3時,代入等式(※)得1+3+c=1•3•c,c=2,與b≤c矛盾,舍去.
所以a=1,b=2,c=3,因此假設(shè)成立,即存在三個正整數(shù),它們的和與積相等.
點評:本題考查用類比法求解.注意仿照所給范例的做法,分別設(shè)這三個正整數(shù)為a、b、c,且a≤b≤c,再根據(jù)題例進行證明即可.此類題目比較簡單,考查了學生對所學知識的應用能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2004•淮安)已知:二次函數(shù)y=x2-mx-4.
(1)求證:該函數(shù)的圖象一定與x軸有兩個不同的交點;
(2)設(shè)該函數(shù)的圖象與x軸的交點坐標為(x1,0)、(x2,0),且,求m的值,并求出該函數(shù)圖象的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年江蘇省淮安市中考數(shù)學試卷(解析版) 題型:解答題

(2004•淮安)已知:二次函數(shù)y=x2-mx-4.
(1)求證:該函數(shù)的圖象一定與x軸有兩個不同的交點;
(2)設(shè)該函數(shù)的圖象與x軸的交點坐標為(x1,0)、(x2,0),且,求m的值,并求出該函數(shù)圖象的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2004•淮安)已知:如圖,在△ABC中,∠BAC的平分線AD交△ABC的外接圓⊙O于點D,交BC于點G.
(1)連接CD,若AG=4,DG=2,求CD的長;
(2)過點D作EF∥BC,分別交AB、AC的延長線于點E、F.求證:EF與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省蘇州市常熟市中考數(shù)學模擬卷(解析版) 題型:解答題

(2004•淮安)已知:如圖,在△ABC中,∠BAC的平分線AD交△ABC的外接圓⊙O于點D,交BC于點G.
(1)連接CD,若AG=4,DG=2,求CD的長;
(2)過點D作EF∥BC,分別交AB、AC的延長線于點E、F.求證:EF與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年江蘇省淮安市中考數(shù)學試卷(解析版) 題型:解答題

(2004•淮安)已知:如圖,在△ABC中,∠BAC的平分線AD交△ABC的外接圓⊙O于點D,交BC于點G.
(1)連接CD,若AG=4,DG=2,求CD的長;
(2)過點D作EF∥BC,分別交AB、AC的延長線于點E、F.求證:EF與⊙O相切.

查看答案和解析>>

同步練習冊答案