企業(yè)的污水處理有兩種方式,一種是輸送到污水廠進行集中處理,另一種是通過企業(yè)的自身設(shè)備進行處理.某企業(yè)去年每月的污水量均為12000噸,由于污水廠處于調(diào)試階段,污水處理能力有限,該企業(yè)投資自建設(shè)備處理污水,兩種處理方式同時進行.1至6月,該企業(yè)向污水廠輸送的污水量y1(噸)與月份x(1≤x≤6,且x取整數(shù))之間滿足的函數(shù)關(guān)系如下表:
月份x(月)123456
輸送的污水量y1(噸)1200060004000300024002000
7至12月,該企業(yè)自身處理的污水量y2(噸)與月份x(7≤x≤12,且x取整數(shù))之間滿足二次函數(shù)關(guān)系式為y2=ax2+c(a≠0).其圖象如圖所示.1至6月,污水廠處理每噸污水的費用:z1(元)與月份x之間滿足函數(shù)關(guān)系式:z1=
1
2
x
,該企業(yè)自身處理每噸污水的費用:z2(元)與月份x之間滿足函數(shù)關(guān)系式:z2=
3
4
x-
1
12
x2
;7至12月,污水廠處理每噸污水的費用均為2元,該企業(yè)自身處理每噸污水的費用均為1.5元.
(1)請觀察題中的表格和圖象,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,分別直接寫出y1,y2與x之間的函數(shù)關(guān)系式;
(2)請你求出該企業(yè)去年哪個月用于污水處理的費用W(元)最多,并求出這個最多費用;
(3)今年以來,由于自建污水處理設(shè)備的全面運行,該企業(yè)決定擴大產(chǎn)能并將所有污水全部自身處理,估計擴大產(chǎn)能后今年每月的污水量都將在去年每月的基礎(chǔ)上增加a%,同時每噸污水處理的費用將在去年12月份的基礎(chǔ)上增加(a-30)%,為鼓勵節(jié)能降耗,減輕企業(yè)負擔,財政對企業(yè)處理污水的費用進行50%的補助.若該企業(yè)每月的污水處理費用為18000元,請計算出a的整數(shù)值.
(參考數(shù)據(jù):
231
≈15.2,
419
≈20.5,
809
≈28.4)
(1)根據(jù)表格中數(shù)據(jù)可以得出xy=定值,則y1與x之間的函數(shù)關(guān)系為反比例函數(shù)關(guān)系:
y1=
k
x
,將(1,12000)代入得:
k=1×12000=12000,
故y1=
12000
x
(1≤x≤6,且x取整數(shù));
根據(jù)圖象可以得出:圖象過(7,10049),(12,10144)點,
代入y2=ax2+c(a≠0)得:
10049=49a+c
10144=144a+c

解得:
a=1
c=10000
,
故y2=x2+10000(7≤x≤12,且x取整數(shù));

(2)當1≤x≤6,且x取整數(shù)時:
W=y1•z1+(12000-y1)•z2=
12000
x
1
2
x+(12000-
12000
x
)•(
3
4
x-
1
12
x2),
=-1000x2+10000x-3000,
∵a=-1000<0,x=-
b
2a
=5,1≤x≤6,
∴當x=5時,W最大=22000(元),
當7≤x≤12時,且x取整數(shù)時,
W=2×(12000-y2)+1.5y2=2×(12000-x2-10000)+1.5(x2+10000),
=-
1
2
x2+19000,
∵a=-
1
2
<0,x=-
b
2a
=0,
當7≤x≤12時,W隨x的增大而減小,
∴當x=7時,W最大=18975.5(元),
∵22000>18975.5,
∴去年5月用于污水處理的費用最多,最多費用是22000元;

(3)由題意得:12000(1+a%)×1.5×[1+(a-30)%]×(1-50%)=18000,
設(shè)t=a%,整理得:10t2+17t-13=0,
解得:t=
-17±
809
20
,
809
≈28.4,
∴t1≈0.57,t2≈-2.27(舍去),
∴a≈57,
答:a的值是57.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c與x軸相交于A、B,點B的坐標為(10,0),頂點M的坐標為(4,8),點P從點M出發(fā),以每秒1個單位的速度沿線段MA向A點運動;點Q從點A出發(fā),以每秒2個單位的速度沿AB向B點運動,若P、Q同時出發(fā),當其中的一點到達終點時,另一點也隨之停止運動,設(shè)運動時間為t秒鐘.
(1)求拋物線的解析式;
(2)設(shè)△APQ的面積為S,求S與t之間的函數(shù)關(guān)系式,△APQ的面積是否有最大值?若有,請求出其最大值;若沒有,請說明理由;
(3)當t為何值時,△APQ為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

二次函數(shù)y=x2+bx+c的圖象與y軸的負半軸相交于點C(0,-3)與x軸正半軸相交于點B,且OB=OC.
①求B點坐標;
②求函數(shù)的解析式及最小值;
③寫出y隨x的增大而減小的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B(3,0)兩點,直線l與拋物線交于A、C兩點,其中C點的橫坐標為2.
(1)求拋物線的解析式及直線AC的解析式;
(2)P是線段AC上的一個動點,過P點作x軸的垂線交拋物線于E點,求線段PE長度的最大值;
(3)點G是拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=mx2-(m-5)x-5(m>0)與x軸交于兩點,A(x1,0),B(x2,0)(x1<x2),與y軸交于點C,且AB=6.
(1)求拋物線與直線BC的解析式;
(2)在所給出的直角坐標系中作出拋物線的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖.用長為18cm的籬笆(虛線部分),兩面靠墻圍成矩形的苗圃,設(shè)矩形的一邊長為x(m),面y(m2),當x=______時,所圍苗圃面積最大.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,是某河床橫斷面的示意圖.據(jù)該河段的水文資料顯示,當水面寬為40米時,河水最深為2米.
(1)請在恰當?shù)钠矫嬷苯亲鴺讼抵星蟪雠c該拋物線型河床橫斷面對應(yīng)的函數(shù)關(guān)系式;
(2)當水面寬度為36米時,一艘吃水深度(船底部到水面的距離)為1.8米的貨船能否在這個河段安全通過?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知直角梯形紙片OABC在平面直角坐標系中的位置如圖①所示,四個頂點的坐標分別為O(0,0),A(10,0),B(8,2
3
),C(0,2
3
),點P在線段OA上(不與O、A重合),將紙片折疊,使點A落在射線AB上(記為點A’),折痕PQ與射線AB交于點Q,設(shè)OP=x,折疊后紙片重疊部分的面積為y.(圖②供探索用)
(1)求∠OAB的度數(shù);
(2)求y與x的函數(shù)關(guān)系式,并寫出對應(yīng)的x的取值范圍;
(3)y存在最大值嗎?若存在,求出這個最大值,并求此時x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,點D在BC上,DEAC,交AB與點E,點F在AC上,DC=DF,若BC=3,EB=4,CD=x,CF=y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案