如圖,某船在上午11時30分在A處測得海島B在東偏北30°,該船以10海里/時的速度向東航行到C處,再測得海島在東偏北60°,且船距海島40海里.
(1)求船到達C點的時間;
(2)若該船從C點繼續(xù)向東航行,何時到達B島正南的D處?
(1)根據(jù)題意得:∠A=30°,∠BCD=60°,BC=40海里,
∴∠ABC=∠BCD-∠A=60°-30°=30°,
∴∠ABC=∠A,
∴AC=BC=40(海里),
∵船的速度為10海里/時,
∴40÷10=4(小時),
∴船到達C點的時間為:15時30分;

(2)在Rt△BCD中,∠BCD=60°,BC=40海里,
∴CD=BC•cos60°=40×
1
2
=20(海里),
∵20÷10=2(小時),
∴在17時30分到達B島正南的D處.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將一副三角尺如圖擺放一起,連接AD,則∠ADB的余切值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知Rt△ABC中,斜邊BC上的高AD=4,cosB=
4
5
,則AC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

為了測量樓房BC的高度,在距離樓房30米的A處,測得樓頂B的仰角為α,那么樓房BC的高為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,A,D是公園中人工湖邊的兩棵樹,AB,BC,CD是公園內(nèi)的甬路.小明同學(xué)想測出A,D兩點間的距離.于是他進行了如下測量:B點在A點北偏東α方向,C點在B點北偏東β方向,C點在D點正東方向.你認為他還需要測出AB,BC,CD中哪些線段的長?并根據(jù)小明的測量和你的判斷推導(dǎo)出AD的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,AB=AC,D為BC上一點,由D分別作DE⊥AB于E,DF⊥AC于F.設(shè)DE=a,DF=b,且實數(shù)a,b滿足9a2-24ab+16b2=0,并有2a2b=2566,∠A使得方程
1
4
x2-x•sinA+
3
sinA-
3
4
=0有兩個相等的實數(shù)根.
(1)試求實數(shù)a,b的值;
(2)試求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,為了測量河的寬度,東北岸選了一點A,東南岸選相距200m的B、C兩點測得∠ABC=60°,∠ACB=45°,求這段河的寬度.(精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了測量一棵大樹的高度,準備了如下測量工具:①鏡子;②皮尺;③長為2米的標桿;④高為1.5米的測量儀(能測量仰角和俯角的儀器),請根據(jù)你所設(shè)計的測量方案,回答下列問題:
(1)在你設(shè)計的方案中,選用的測量工具是(用工具序號填寫);
(2)在圖示中畫出你的測量方案示意圖,并結(jié)合示意圖簡單闡述你的方案;
(3)你需要測量示意圖中哪些線段或角,并用a、b、c、α等字母表示測得的數(shù)據(jù)______;
(4)根據(jù)(3)中測量所得的數(shù)據(jù),寫出求樹高的算式:AB=______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,熱氣球的探測器顯示,從熱氣球A看一棟高樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,這棟高樓BC的高度為( 。
A.40
3
m
B.80
3
m
C.120
3
m
D.160
3
m

查看答案和解析>>

同步練習(xí)冊答案