【題目】如圖,,,,點(diǎn)在線段上,點(diǎn)在線段上,
(1)若,求四邊形的面積;
(2)求證:
【答案】(1)50;(2)見解析
【解析】
(1)求出∠BAC=∠EAD,根據(jù)SAS推出△ABC≌△ADE,推出四邊形ABCD的面積=三角形ACE的面積,即可得出答案;
(2)過點(diǎn)A作AG⊥CG,垂足為點(diǎn)G,求出AF=AG,求出CG=AG=GE,即可得出答案.
(1)∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD
∴∠BAC=∠EAD,
在△ABC和△ADE中,
,
∴△ABC≌△ADE(SAS),
∵S四邊形ABCD=S△ABC+S△ACD,
∴S四邊形ABCD=S△ADE+S△ACD=S△ACE=×102=50;
(2)證明:∵△ACE是等腰直角三角形,
∴∠ACE=∠AEC=45°,
由△ABC≌△ADE得:
∠ACB=∠AEC=45°,
∴∠ACB=∠ACE,
∴AC平分∠ECF;
過點(diǎn)A作AG⊥CG,垂足為點(diǎn)G,
∵AC平分∠ECF,AF⊥CB,
∴AF=AG,
又∵AC=AE,
∴∠CAG=∠EAG=45°,
∴∠CAG=∠EAG=∠ACE=∠AEC=45°,
∴CG=AG=GE,
∴CE=2AG,
∴CE=2AF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水池的容積為90m3,水池中已有水10m3,現(xiàn)按8m3/h的流量向水池注水.
(1)寫出水池中水的體積y(m3)與進(jìn)水時間t(h)之間的函數(shù)表達(dá)式,并寫出自變量t的取值范圍;
(2)當(dāng)t=1時,求y的值;當(dāng)V=50時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊三角形的邊長為,過邊上一點(diǎn)作于點(diǎn),為延長線上一點(diǎn),取,連接,交于,則的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線y=﹣x+3與x軸、y軸交于點(diǎn)A,點(diǎn)B,點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為點(diǎn)O′,且點(diǎn)O′恰好在反比例函數(shù)y=的圖象上.
(1)求點(diǎn)A與B的坐標(biāo);
(2)求k的值;
(3)若y軸正半軸有點(diǎn)P,過點(diǎn)P作x軸的平行線,且與反比例函數(shù)y=的圖象交于點(diǎn)Q,設(shè)A、P、Q、O′四個點(diǎn)所圍成的四邊形的面積為S.若S=S△OAB時,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延長線于E,若CE=5cm,求BD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,AC的垂直平分線MN交AB于D,交AC于E.
(1)若∠A=40°,求∠BCD的度數(shù);
(2)若AE=5,△BCD的周長17,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點(diǎn)為上一點(diǎn),將沿翻折后點(diǎn)恰好落在邊上的點(diǎn)處,過作于,交于,連接.
求證:四邊形是菱形;
若,,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是的中點(diǎn),是線段延長線上一點(diǎn),過點(diǎn)作,與線段的延長線交于點(diǎn),連結(jié)、.
求證:;
若,試判斷四邊形是什么樣的四邊形,并證明你的結(jié)論;
若為的中點(diǎn),求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com