【題目】如圖,的直角頂點P在第四象限,頂點A、B分別落在反比例函數(shù)圖象的兩支上,且軸于點C,軸于點D,AB分別與x軸,y軸相交于點F和已知點B的坐標為.
填空:______;
證明:;
當四邊形ABCD的面積和的面積相等時,求點P的坐標.
【答案】(1)3;(2)證明見解析;(3)點坐標為.
【解析】
由點B的坐標,利用反比例函數(shù)圖象上點的坐標特征可求出k值;
設A點坐標為,則D點坐標為,P點坐標為,C點坐標為,進而可得出PB,PC,PA,PD的長度,由四條線段的長度可得出,結合可得出∽,由相似三角形的性質可得出,再利用“同位角相等,兩直線平行”可證出;
由四邊形ABCD的面積和的面積相等可得出,利用三角形的面積公式可得出關于a的方程,解之取其負值,再將其代入P點的坐標中即可求出結論.
解:點在反比例函數(shù)的圖象,
.
故答案為:3.
證明:反比例函數(shù)解析式為,
設A點坐標為
軸于點C,軸于點D,
點坐標為,P點坐標為,C點坐標為,
,,,,
,,
.
又,
∽,
,
.
解:四邊形ABCD的面積和的面積相等,
,
,
整理得:,
解得:,舍去,
點坐標為.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關系如圖所示.
(1)求甲、乙兩車行駛的速度V甲、V乙.
(2)求m的值.
(3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年疫情防控期間.某小區(qū)衛(wèi)生所決定購買A,B兩種口罩.以滿足小區(qū)居民的需要.若購買A種口罩9包,B種口罩4包,則需要700元;若購買A種口罩3包.B種口罩5包.則需要380元.
(1)購買人A,B兩種口罩每包各需名少元?
(2)衛(wèi)生所準備購進這兩種口罩共90包,并且A種口罩包數(shù)不少于B種口罩包數(shù)的2倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+bx經(jīng)過點A(2,0).直線y=x﹣2與x軸交于點B,與y軸交于點C.
(1)求這條拋物線的表達式和頂點的坐標;
(2)將拋物線y=x2+bx向右平移,使平移后的拋物線經(jīng)過點B,求平移后拋物線的表達式;
(3)將拋物線y=x2+bx向下平移,使平移后的拋物線交y軸于點D,交線段BC于點P、Q,(點P在點Q右側),平移后拋物線的頂點為M,如果DP∥x軸,求∠MCP的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,CB、CD是⊙O的切線,切點分別為B、D,CD的延長線與⊙O的直徑BE的延長線交于A點,連OC,ED.
(1)探索OC與ED的位置關系,并加以證明;
(2)若OD=4,CD=6,求tan∠ADE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知邊長為1的正方形ABCD中, P是對角線AC上的一個動點(與點A、C不重合),過點P作PE⊥PB ,PE交射線DC于點E,過點E作EF⊥AC,垂足為點F.
(1)當點E落在線段CD上時(如圖),
①求證:PB=PE;
②在點P的運動過程中,PF的長度是否發(fā)生變化?若不變,試求出這個不變的值,若變化,試說明理由;
(2)當點E落在線段DC的延長線上時,在備用圖上畫出符合要求的大致圖形,并判斷上述(1)中的結論是否仍然成立(只需寫出結論,不需要證明);
(3)在點P的運動過程中,△PEC能否為等腰三角形?如果能,試求出AP的長,如果不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果店購進一批優(yōu)質晚熟芒果,進價為10元/千克,售價不低于15元/千克,且不超過40元/千克,根據(jù)銷售情況發(fā)現(xiàn)該芒果在一天內的銷售量(千克)與該天的售價(元/千克)之間滿足如下表所示的一次函數(shù)關系:
(1)寫出銷售量與售價之間的函數(shù)關系式;
(2)設某天銷售這種芒果獲利元,寫出與售價之間的函數(shù)關系式,并求出當售價為多少元時,當天的獲利最大,最大利潤是多少?
售價(元/千克) | … | 25 | 24.5 | 22 | … |
銷售量(千克) | … | 35 | 35.5 | 38 | … |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,點G在邊BC的延長線上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于點O.
(1)求證:OE=OF;
(2)若點O為CD的中點,求證:四邊形DECF是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,A(a,0),B(0,b),a,b滿足,將線段AB平移得到CD,A,B的對應點分別為C,D,其中點C在y軸負半軸上.
(1)求A,B兩點的坐標;
(2)如圖1,連AD交BC于點E,若點E在y軸正半軸上,求的值;
(3)如圖2,點F,G分別在CD,BD的延長線上,連結FG,∠BAC的角平分線與∠DFG的角平分線交于點H,求∠G與∠H之間的數(shù)量關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com