【題目】如圖,⊙O為等邊△ABC的外接圓,ADBC,∠ADC90°CD交⊙O于點(diǎn)E

1)求證:AD是⊙O的切線;

2)若DE2,求陰影部分的面積.

【答案】1)見解析;(26

【解析】

1)連接AO并延長交BCF,易知AFBC,根據(jù)ADBC可得ADOA, 進(jìn)而可得結(jié)論;

2)連接AE、OE,易證AFCD,則∠ACD=∠CAFBAC30°,從而∠AOE60°,進(jìn)而可證明△AOE是等邊三角形,于是OAAE,∠OAE60°,可得∠DAE30°,然后由30°角的直角三角形的性質(zhì)可得AEAD的長,再根據(jù)陰影部分的面積=梯形OADE的面積﹣扇形AOE的面積,代入相關(guān)數(shù)據(jù)計(jì)算即得答案.

1)證明:連接AO并延長交BC于點(diǎn)F,如圖1所示,

∵△ABC是等邊三角形,

AFBC,

ADBC

ADOA,

AD是⊙O的切線;

2)解:連接AE、OE,如圖2所示,

∵△ABC是等邊三角形,

∴∠BAC=60°,

∵∠ADC90°

CDAD,

AFCD

∴∠ACD=∠CAFBAC30°,

∴∠AOE2ACD60°,

OAOE,

∴△AOE是等邊三角形,

OAAE,∠OAE60°,

∴∠DAE30°,

∵∠ADC90°,

OAAE2DE4,ADDE2,

∴陰影部分的面積=梯形OADE的面積﹣扇形AOE的面積=2+4×26

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的菱形ABCD中,∠ABC60°,將ABD沿射線BD的方向平移得到A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,AB是⊙O的直徑,點(diǎn)P在AB的延長線上,弦CE交AB于點(diǎn),連結(jié)OE,AC,且∠P=∠E,∠POE=2∠CAB.

(1)求證:CE⊥AB;

(2)求證:PC是⊙O的切線;

(3)若BD=2OD,且PB=9,求⊙O的半徑長和tan∠P的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在星期一的第八節(jié)課,我校體育老師隨機(jī)抽取了九年級的總分學(xué)生進(jìn)行體育中考的模擬測試,并對成績進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,按得分劃分成A、B、C、D、E、F六個(gè)等級,并繪制成如下兩幅不完整的統(tǒng)計(jì)圖表.

 等級

 得分x(分)

 頻數(shù)(人)

 A

 95<x≤100

 4

 B

 90<x≤95

 m

 C

 85<x≤90

 n

 D

 80<x≤85

 24

 E

 75<x≤80

 8

 F

 70<x≤75

 4

請你根據(jù)圖表中的信息完成下列問題:

1)本次抽樣調(diào)查的樣本容量是   .其中m=   ,n=   

2)扇形統(tǒng)計(jì)圖中,求E等級對應(yīng)扇形的圓心角α的度數(shù);

3)我校九年級共有700名學(xué)生,估計(jì)體育測試成績在A、B兩個(gè)等級的人數(shù)共有多少人?

4)我校決定從本次抽取的A等級學(xué)生(記為甲、乙、丙、丁)中,隨機(jī)選擇2名成為學(xué)校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線交于B,C兩點(diǎn).

1)求拋物線的解析式及點(diǎn)C的坐標(biāo);

2)求△ABC的面積;

3)若點(diǎn)Nx軸上的一個(gè)動點(diǎn),過點(diǎn)NMNx軸與拋物線交于點(diǎn)M,則是否存在以OM,N為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有一組鄰邊相等的凸四邊形叫做“準(zhǔn)菱形”.利用該定義完成以下各題:

(1) 理解

填空:如圖1,在四邊形ABCD中,若     (填一種情況),則四邊形ABCD是“準(zhǔn)菱形”;

(2)應(yīng)用

證明:對角線相等且互相平分的“準(zhǔn)菱形”是正方形;(請畫出圖形,寫出已知,求證并證明)

(3) 拓展

如圖2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,將Rt△ABC沿∠ABC的平分線BP方向平移得到△DEF,連接AD,BF,若平移后的四邊形ABFD是“準(zhǔn)菱形”,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4cm,動點(diǎn)E從點(diǎn)A出發(fā),以1cm/秒的速度沿折線ABBC的路徑運(yùn)動,到點(diǎn)C停止運(yùn)動.過點(diǎn)E EFBDEF與邊AD(或邊CD)交于點(diǎn)F,EF的長度ycm)與點(diǎn)E的運(yùn)動時(shí)間x(秒)的函數(shù)圖象大致是

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查學(xué)生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行了整理、描述和分析.下面給出了部分信息.

a.甲、乙兩校40名學(xué)生成績的頻數(shù)分布統(tǒng)計(jì)表如下:

成績x

學(xué)校

4

11

13

10

2

6

3

15

14

2

(說明:成績80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)

b.甲校成績在這一組的是:

70 70 70 71 72 73 73 73 74 75 76 77 78

c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)如下:

學(xué)校

平均分

中位數(shù)

眾數(shù)

74.2

n

5

73.5

76

84

根據(jù)以上信息,回答下列問題:

1)寫出表中n的值;

2)在此次測試中,某學(xué)生的成績是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是_____________校的學(xué)生(填),理由是__________;

3)假設(shè)乙校800名學(xué)生都參加此次測試,估計(jì)成績優(yōu)秀的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正六邊形ABCDEF的邊長為,點(diǎn)GH,I,JK,L依次在正六邊形的六條邊上,且AGBHCIDJEKFL,順次連結(jié)GI,K,和HJ,L,則圖中陰影部分的周長C的取值范圍為( 。

A.6C6B.3C3C.3C6D.3C6

查看答案和解析>>

同步練習(xí)冊答案