【題目】小明投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),每月銷(xiāo)售的數(shù)量y(件)是售價(jià)x(元/件)的一次函數(shù),其對(duì)應(yīng)關(guān)系如表:

x/(元/件)

22

25

30

35

y/

280

250

200

150

在銷(xiāo)售過(guò)程中銷(xiāo)售單價(jià)不低于成本價(jià),物價(jià)局規(guī)定每件商品的利潤(rùn)不得高于成本價(jià)的60%

1)請(qǐng)求出y關(guān)于x的函數(shù)關(guān)系式.

2)設(shè)小明每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)與售價(jià)x(元/件)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.

3)當(dāng)售價(jià)定為多少元/件時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)是多少?

【答案】1y=﹣10x+500;(2w=﹣10x2+700x1000020≤x≤32);(3)當(dāng)售價(jià)定為32/件時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)是2160元.

【解析】

1)直接利用待定系數(shù)法即可求解;

2)根據(jù)每月獲得利潤(rùn)=每件商品的利潤(rùn)每月銷(xiāo)售的數(shù)量即可求解;

3)根據(jù)二次函數(shù)的增減性即可求解.

解:(1)設(shè)yx的函數(shù)關(guān)系式為ykx+b,

,得,

yx的函數(shù)關(guān)系式為y=﹣10x+500;

2)由題意可得,

w=(x20y=(x20)(﹣10x+500)=﹣10x2+700x10000,

∵在銷(xiāo)售過(guò)程中銷(xiāo)售單價(jià)不低于成本價(jià),物價(jià)局規(guī)定每件商品的利潤(rùn)不得高于成本價(jià)的60%,

x≥20,x20≤20×60%,

20≤x≤32,

即每月獲得利潤(rùn)w(元)與售價(jià)x(元/件)之間的函數(shù)關(guān)系式是w=﹣10x2+700x1000020≤x≤32);

3)∵w=﹣10x2+700x10000=﹣10x352+2250,20≤x≤32,

∴當(dāng)x32時(shí),w取得最大值,此時(shí)w2160

答:當(dāng)售價(jià)定為32/件時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)是2160元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,、分別為邊、的中點(diǎn),連接、交于點(diǎn)

1)求證:;

2)如圖,連接,于點(diǎn)

①求證:;

②若,求三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的對(duì)稱(chēng)軸為直線.給出下列結(jié)論:

; ;

其中,正確的結(jié)論有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高學(xué)生的綜合素養(yǎng),某校開(kāi)設(shè)了五門(mén)手工活動(dòng)課.按照類(lèi)別分為:“剪紙”、“沙畫(huà)”、“葫蘆雕刻”、“泥塑”、“插花”.為了了解學(xué)生對(duì)每種活動(dòng)課的喜愛(ài)情況,隨機(jī)抽取了部分同學(xué)進(jìn)行調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息,回答下列問(wèn)題:

1)本次調(diào)查的樣本容量為________;統(tǒng)計(jì)圖中的________,________;

2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)該校共有2500名學(xué)生,請(qǐng)你估計(jì)全校喜愛(ài)“葫蘆雕刻”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)A0,2)為圓心,2為半徑的圓交y軸于點(diǎn)B.已知點(diǎn)C20),點(diǎn)D為⊙A上的一動(dòng)點(diǎn),以CD為斜邊,在CD左側(cè)作等腰直角三角形CDE,連結(jié)BC,則BCE面積的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A(-3,0)、點(diǎn)B(0,),直線x軸、y軸分別交于點(diǎn)DC,M是平面內(nèi)一動(dòng)點(diǎn),且∠AMB=60°,則MCD面積的最小值是 ________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,ABAC2BC8,按下列步驟作圖:

①以點(diǎn)A為圓心,適當(dāng)?shù)拈L(zhǎng)度為半徑作弧,分別交AB,AC于點(diǎn)E,F,再分別以點(diǎn)E,F為圓心,大于EF的長(zhǎng)為半徑作弧相交于點(diǎn)H,作射線AH

②分別以點(diǎn)A,B為圓心,大于AB的長(zhǎng)為半徑作弧相交于點(diǎn)M,N,作直線MN,交射線AH于點(diǎn)O;

③以點(diǎn)O為圓心,線段OA長(zhǎng)為半徑作圓.

則⊙O的半徑為( 。

A.2B.10C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)居民節(jié)水意識(shí),我市自來(lái)水公司采用以戶(hù)為單位分段計(jì)費(fèi)辦法收費(fèi),即每月用水不超過(guò)10噸,每噸收費(fèi)元;若超過(guò)10噸,則10噸水按每噸元收費(fèi),超過(guò)10噸的部分按每噸元收費(fèi),公司為居民繪制的水費(fèi)(元)與當(dāng)月用水量(噸)之間的函數(shù)圖象如下,則下列結(jié)論錯(cuò)誤的是(

A.

B.

C.若小明家3月份用水14噸,則應(yīng)繳水費(fèi)23

D.若小明家7月份繳水費(fèi)30元,則該用戶(hù)當(dāng)月用水

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,點(diǎn)上一點(diǎn),和過(guò)點(diǎn)的切線互相垂直,垂足為點(diǎn),直線的延長(zhǎng)線相交于點(diǎn).弦平分,交直徑于點(diǎn),連接

1)求證:平分;

2)探究線段,之間的大小關(guān)系,并加以證明;

3)若,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案