【題目】如圖,二次函數(shù)的圖象與軸相交于兩點,與軸相交于點,點、是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點、

點坐標(biāo);

求二次函數(shù)的解析式;

根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的的取值范圍.

【答案】;;

【解析】

1)由題題可知,點C、D是二次函數(shù)圖象上的一對對稱點,而二次函數(shù)圖象關(guān)于x=-1對稱,點CD縱坐標(biāo)相同,所以D點坐標(biāo)為(-2,3).

(2)利用A、B、C三點坐標(biāo),可得到關(guān)于二次函數(shù)解析式的二元一次方程組,解方程組求出各項系數(shù),代入解析式即可求出二次函數(shù)解析式.

(3)由圖象可知,BD所在部分一次函數(shù)值小于二次函數(shù)值,所以BD以外的部分一次函數(shù)值均大于二次函數(shù)值,所以x的取值范圍是x<-2x>1.

∵拋物線的對稱軸是,而、關(guān)于直線對稱,

;

設(shè)該拋物線的解析式為,

代入,得

,

解得,

所以該拋物線的解析式為

;

根據(jù)圖象知,一次函數(shù)值小于二次函數(shù)值的的取值范圍是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABBC,BFCF,∠C30°,DAC的中點,ECD的中點,連接BE,AF交于G,連接DG

1)若EBC的距離為2,求AB的長;

2)證明:GD平分∠AGE

3)猜想BG,FG,GD,AF的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張長方形ABCD紙張中,一邊BC折疊后落在對角線BD上,點E為折痕與邊CD的交點,若AB=5,BC=12,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).

(1)求點B,C的坐標(biāo);

(2)判斷CDB的形狀并說明理由;

(3)將COB沿x軸向右平移t個單位長度(0<t<3)得到QPE.QPE與CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一架梯子AB斜靠在墻面上,且AB的長為2.5米.

(1)若梯子底端離墻角的距離OB為0.7米,求這個梯子的頂端A距地面有多高?

(2)在(1)的條件下,如果梯子的頂端A下滑0.4米到點A′,那么梯子的底端B在水平方向滑動的距離BB′為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某村為增加蔬菜的種植面積,一年中修建了一些蔬菜大棚.平均修建每公頃大棚要用的支架、塑料膜等材料的費(fèi)用為元,此外還要購置噴灌設(shè)備,這項費(fèi)用(元)與大棚面積(公頃)的平方成正比,比例系數(shù)為.每公頃大棚的年平均經(jīng)濟(jì)收益為元,這個村一年中由于修建蔬菜大棚而增加的收益(扣除修建費(fèi)用后)為元.

一年中這個村修建了多少公頃蔬菜大棚?

若要使收益達(dá)到最大,請問應(yīng)修建多少公頃大棚?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個大小不同的等腰直角三角板按圖①所示的位置放置,圖②是由它抽象畫出的幾何圖形,,,,,在同一條直線上,連接.

(1)請找出圖②中與全等的三角形,并給予證明(說明:結(jié)論中不得含有未標(biāo)識的字母);

(2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,過點C的直線MNAB,DAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CD、BE

1)求證:CEAD;

2)當(dāng)DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,分別以點A和點B為圓心,大于AB的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD,若ADC的周長為8,AB=6,則ABC的周長為( 。

A. 20 B. 22 C. 14 D. 16

查看答案和解析>>

同步練習(xí)冊答案