【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+ca、b、c為常數(shù),a≠0)的衍生直線;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其衍生三角形.已知拋物線與其衍生直線交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C

1)填空:該拋物線的衍生直線的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;

2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將ACMAM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若AMN為該拋物線的衍生三角形,求點(diǎn)N的坐標(biāo);

3)當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的衍生直線上,是否存在點(diǎn)F,使得以點(diǎn)A、C、EF為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)EF的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】1;-2,;(1,0);

2N點(diǎn)的坐標(biāo)為(0,),(0,);

3E-1-)、F0,)或E-1,),F-4

【解析】

1)由拋物線的衍生直線知道二次函數(shù)解析式的a即可;(2)過A作AD⊥y軸于點(diǎn)D,則可知AN=AC,結(jié)合A點(diǎn)坐標(biāo),則可求出ON的長(zhǎng),可求出N點(diǎn)的坐標(biāo);(3)分別討論當(dāng)AC為平行四邊形的邊時(shí),當(dāng)AC為平行四邊形的對(duì)角線時(shí),求出滿足條件的E、F坐標(biāo)即可

1)∵,a=,則拋物線的衍生直線的解析式為;

聯(lián)立兩解析式求交點(diǎn),解得

A-2,,B1,0);

2)如圖1,過AAD⊥y軸于點(diǎn)D

中,令y=0可求得x= -3x=1

C-3,0,且A-2,,

∴AC=

由翻折的性質(zhì)可知AN=AC=,

AMN為該拋物線的衍生三角形,

Ny軸上,且AD=2,

Rt△AND中,由勾股定理可得

DN=,

OD=,

∴ON=ON=,

N點(diǎn)的坐標(biāo)為(0),(0,);

3)①當(dāng)AC為平行四邊形的邊時(shí),如圖2 ,過F作對(duì)稱軸的垂線FH,過AAK⊥x軸于點(diǎn)K,則有AC∥EFAC=EF,

∠ ACK=∠ EFH,

△ ACK△ EFH

△ ACK≌△ EFH,

FH=CK=1,HE=AK=,

拋物線的對(duì)稱軸為x=-1

∴ F點(diǎn)的橫坐標(biāo)為0-2,

∵點(diǎn)F在直線AB上,

∴當(dāng)F點(diǎn)的橫坐標(biāo)為0時(shí),則F0,),此時(shí)點(diǎn)E在直線AB下方,

∴Ey軸的距離為EH-OF=-=,即E的縱坐標(biāo)為-,

∴ E-1,-);

當(dāng)F點(diǎn)的橫坐標(biāo)為-2時(shí),則FA重合,不合題意,舍去;

當(dāng)AC為平行四邊形的對(duì)角線時(shí),

∵ C-3,0),且A-2,

線段AC的中點(diǎn)坐標(biāo)為(-2.5, ),

設(shè)E-1,t),Fxy),

x-1=2×-2.5),y+t=,

x= -4y=-t,

-t=-×-4+,解得t=,

E-1,),F-4);

綜上可知存在滿足條件的點(diǎn)F,此時(shí)E-1,-)、(0,)或E-1,),F-4,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,則下列結(jié)論:;②;③;④;⑤的解為,其中正確的有(

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工廠對(duì)某種新型材料進(jìn)行加工,首先要將其加溫,使這種材料保持在一定溫度范圍內(nèi)方可加工,如圖是在這種材料的加工過程中,該材料的溫度y)時(shí)間xmin)變化的數(shù)圖象,已知該材料,初始溫度為15℃,在溫度上升階段,yx成一次函數(shù)關(guān)系,在第5分鐘溫度達(dá)到60℃后停止加溫,在溫度下降階段,yx成反比例關(guān)系.

1)寫出該材料溫度上升和下降階段,yx的函數(shù)關(guān)系式:

①上升階段:當(dāng)0≤x≤5時(shí),y   

②下降階段:當(dāng)x5時(shí),y   

2)根據(jù)工藝要求,當(dāng)材料的溫度不低于30℃,可以進(jìn)行產(chǎn)品加工,請(qǐng)問在圖中所示的溫度變化過程中,可以進(jìn)行加工多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品的標(biāo)價(jià)為500/件,經(jīng)過兩次降價(jià)后的價(jià)格為405/件,并且兩次降價(jià)的百分率相同.

1)求該種商品每次降價(jià)的百分率;

2)若該種商品進(jìn)價(jià)為400/件,兩次降價(jià)共售出此種商品100件,為使兩次降價(jià)銷售的總利潤(rùn)不少于3200元.問第一次降價(jià)后至少要售出該種商品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B0,4),C0,2).

1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的C;平移△ABC,若A的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(0,4),畫出平移后對(duì)應(yīng)的;

2)若將C繞某一點(diǎn)旋轉(zhuǎn)可以得到,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo);

3)在軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EBC的中點(diǎn),連接DE,過點(diǎn)AAGEDDE于點(diǎn)F,交CD于點(diǎn)G

1)證明:△ADG≌△DCE;(2)連接BF,證明:ABFB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cy軸交于點(diǎn)A(0,2),對(duì)稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點(diǎn),點(diǎn)B在對(duì)稱軸左側(cè),BC=6.

(1)求此拋物線的解析式.

(2)點(diǎn)Px軸上,直線CP將△ABC面積分成2:3兩部分,請(qǐng)直接寫出P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)yx+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個(gè)新圖象(如圖所示),當(dāng)直線yx+m與這個(gè)新圖象有四個(gè)交點(diǎn)時(shí),m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+c,當(dāng)x3時(shí),y有最小值﹣4,且圖象經(jīng)過點(diǎn)(112)

(1)求此二次函數(shù)的解析式;

(2)該拋物線交x軸于點(diǎn)AB(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,在拋物線對(duì)稱軸上有一動(dòng)點(diǎn)P,求PA+PC的最小值,并求當(dāng)PA+PC取最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案