【題目】如圖,拋物線y=x24xx軸交于O,A兩點(diǎn),P為拋物線上一點(diǎn),過(guò)點(diǎn)P的直線y=x+m與對(duì)稱軸交于點(diǎn)Q

1)這條拋物線的對(duì)稱軸是 ,直線PQx軸所夾銳角的度數(shù)是

2)若兩個(gè)三角形面積滿足SPOQ=SPAQ,求m的值;

3)當(dāng)點(diǎn)Px軸下方的拋物線上時(shí),過(guò)點(diǎn)C2,2)的直線AC與直線PQ交于點(diǎn)D,求:PDDQ的最大值;PDDQ的最大值.

【答案】(1x=2,45;(2m=-12;(3618

【解析】試題分析:(1)把解析式轉(zhuǎn)化成頂點(diǎn)式,或利用對(duì)稱軸公式即可得該拋物線的對(duì)稱軸,利用直線y=x+m與坐標(biāo)軸的交點(diǎn)坐標(biāo)即可求得直線PQx軸所夾銳角的度數(shù);(2)分情況討論,即直線PQx軸的交點(diǎn)落在OA的延長(zhǎng)線上,OA上,AO的延長(zhǎng)線上三種情況討論m.設(shè)直線PQx軸于點(diǎn)B,分別過(guò)O點(diǎn),A點(diǎn)作PQ的垂線,垂足分別是E、F,,當(dāng)點(diǎn)BOA的延長(zhǎng)線時(shí),SPOQ=SPAQ不成立;當(dāng)點(diǎn)B落在線段OA上時(shí), ,由OBE∽△ABF得, ,由對(duì)稱軸求出A點(diǎn)坐標(biāo),再由比例式求出B點(diǎn)坐標(biāo),代入直線PQ解析式,即可求得m值;當(dāng)點(diǎn)B落在線段AO的延長(zhǎng)線上時(shí),同理由比例式求出B點(diǎn)坐標(biāo),進(jìn)而確定m值;(3)由題意可過(guò)點(diǎn)CCHx軸交直線PQ于點(diǎn)H,可得CHQ是等腰三角形,ADPHDQ=DH,PDDQ=PH,過(guò)P點(diǎn)作PMCH于點(diǎn)M,可得PMH是等腰直角三角形,PH=PM,即當(dāng)PM最大時(shí),PH最大,顯然當(dāng)點(diǎn)P在拋物線頂點(diǎn)處時(shí),PM最大,此時(shí)PM=6,于是求得PH的最大值.PDDQ的最大值;上題求得PD+DQ的最大值為6.即PD+DQ ≤6,設(shè)PD=a,則DQ ≤6a,所以PDDQ≤a6a=-(a3218,即當(dāng)PD=DQ=3時(shí)求得PDDQ的最大值

試題解析:(1y=x24x=(x2)24,拋物線的對(duì)稱軸是直線x=2直線y=x+m與坐標(biāo)軸的交點(diǎn)坐標(biāo)為(m,0),(0,m),交點(diǎn)到原點(diǎn)的距離相等,直線與坐標(biāo)軸圍成的三角形是等腰直角三角形,直線PQx軸所夾銳角的度數(shù)是45°.故答案為x=2;45°.(2)設(shè)直線PQx軸于點(diǎn)B,分別過(guò)O點(diǎn),A點(diǎn)作PQ的垂線,垂足分別是EF,顯然當(dāng)點(diǎn)BOA的延長(zhǎng)線時(shí),OE>AF,SPOQ=SPAQ不成立;當(dāng)點(diǎn)B落在線段OA上時(shí),如圖,

,由OBE∽△ABF得, ,AB=3OB,OB =OA,由y=x24x得點(diǎn)A4,0),OB=1,B10),代入y=x+m,1m=0,m=1;當(dāng)點(diǎn)B落在線段AO的延長(zhǎng)線上時(shí),如圖,

同理可得OB =OA=2B(-20),2m=0m=2,;綜上所述,當(dāng)m=12時(shí),SPOQ=SPAQ;

3過(guò)點(diǎn)CCH∥x軸交直線PQ于點(diǎn)H,如圖,

可得CHQ是等腰三角形,=45°+45°=90°ADPH,DQ=DH,PDDQ=PH,過(guò)P點(diǎn)作PMCH于點(diǎn)M,則PMH是等腰直角三角形,PH=PM當(dāng)PM最大時(shí),PH最大,當(dāng)點(diǎn)P在拋物線頂點(diǎn)處時(shí),PM最大,此時(shí)PM=6PH的最大值為6,即PD+DQ的最大值為6可知:PD+DQ ≤6,設(shè)PD=a,則DQ ≤6a,PDDQ ≤a6a=a26a=-(a3218,當(dāng)點(diǎn)P在拋物線的頂點(diǎn)時(shí),a=3PDDQ ≤18.;PDDQ的最大值為18

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=1,BC=2,BC在x軸上,一次函數(shù)y=kx﹣2的圖象經(jīng)過(guò)點(diǎn)A、C,并與y軸交于點(diǎn)E,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A.

(1)點(diǎn)E的坐標(biāo)是

(2)求反比例函數(shù)的解析式;

(3)求當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中ADBC,CEAB,垂足分別為D、E,AD、CE交于點(diǎn)H,已知EH=EB=3,AE=4,則CH的長(zhǎng)是( )

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】普通的鐘表在4點(diǎn)時(shí),時(shí)針與分針的夾角的度數(shù)是 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的標(biāo)價(jià)為200元,8折銷售仍獲利25%,則商品進(jìn)價(jià)為______元;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班數(shù)學(xué)興趣小組進(jìn)行了如下探究:(1)如圖,若四邊形ABCD是矩形,對(duì)角線AC、BD交點(diǎn)為P,過(guò)點(diǎn)P作PQBC于點(diǎn)Q,連結(jié)DQ交AC于點(diǎn)P1,過(guò)點(diǎn)P1作P1Q1BC于點(diǎn)Q1,已知AB=CD=a,則PQ= ,P1Q1= .(用含a的代數(shù)式表示)

(2)如圖,在直角梯形ABCD中,ABCD,ABC=90°,AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作PQBC于點(diǎn)Q.已知AB=a,CD=b,請(qǐng)用含a、b的代數(shù)式表示線段PQ的長(zhǎng),寫出你的解題過(guò)程.

(3)如圖,在直角坐標(biāo)系xOy中,梯形ABCD的腰BC在x軸正半軸上(點(diǎn)B與原點(diǎn)O重合),ABCD,ABC=60°,AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作PQCD交BC于點(diǎn)Q,連結(jié)AQ交BD于點(diǎn)P1,過(guò)點(diǎn)P1作P1Q1CD交BC于點(diǎn)Q1.連結(jié)AQ1交BD于點(diǎn)P2,過(guò)點(diǎn)P2作P2Q2CD交BC于點(diǎn)Q2,…,已知AB=a,CD=b,則點(diǎn)P1的縱坐標(biāo)為 點(diǎn)Pn的縱坐標(biāo)為 (直接用含a、b、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是O的直徑,C是O上一點(diǎn),AD垂直于過(guò)點(diǎn)C的切線,垂足為D.

(1)求證:AC平分BAD;

(2)若AC2,CD2,求O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法不正確的是(

A. 各邊都相等的多邊形是正多邊形

B. 正多形的各邊都相等

C. 正三角形就是等邊三角形

D. 各內(nèi)角相等的多邊形不一定是正多邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a+b=3,ab=2,則a2+b2的值為

查看答案和解析>>

同步練習(xí)冊(cè)答案