如圖所示,P是邊長(zhǎng)為8的正方形ABCD形外一點(diǎn),PB=PC,△PBD的面積等于48,求△PBC的面積.精英家教網(wǎng)
分析:首先設(shè)PD與BC交點(diǎn)是O,取BC中點(diǎn)E,連接PE,根據(jù)等腰三角形與正方形的性質(zhì),可得PE∥CD,然后設(shè)PE=x,根據(jù)平行線分線段成比例定理,即可求得OB的長(zhǎng),又由S△PBD=S△PBO+S△DBO=48,即可求得x的值,繼而求得△PBC的面積.
解答:解:設(shè)PD與BC交點(diǎn)是O,取BC中點(diǎn)E,連接PE.
∵PB=PC,精英家教網(wǎng)
∴PE⊥BC,
∵四邊形ABCD是正方形,
∴CD⊥BC,
∴PE∥CD.
設(shè)PE=x,
OE
OC
=
PE
CD
=
x
8
,
∵OE+OC=CE=
1
2
BC=4,
∴OE=
4x
x+8

∴OB=OE+BE=
4x
x+8
+4=
8x+32
x+8
,
∴S△PBD=S△PBO+S△DBO=
1
2
BO•PE+
1
2
BO•DC=
1
2
(PE+DC)BO=
1
2
(x+8)•
8x+32
x+8
=4x+16=48,
∴x=8,
∴PE=8,
∴S△PBC=
1
2
PE•BC=
1
2
×8×8=32.
點(diǎn)評(píng):此題考查了正方形的性質(zhì),等腰三角形的性質(zhì),平行線分線段成比例定理等知識(shí).此題難度較大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想與方程思想的應(yīng)用,注意輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,△ABC是邊長(zhǎng)為6cm的等邊三角形,被一平行于BC的矩形所截,AB被截成三等分,則圖中陰影部分的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,P是邊長(zhǎng)為1的正三角形ABC的BC邊上一點(diǎn),從P向AB作垂線PQ,Q為垂足.延長(zhǎng)QP與AC的延長(zhǎng)線交于R,設(shè)BP=x(0≤x≤1),△BPQ與△CPR的面積之和為y,把y表示為x的函數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州一模)一個(gè)包裝盒的設(shè)計(jì)方法如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=xcm.若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取的值為
15
15
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河?xùn)|區(qū)一模)請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)長(zhǎng)方體形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn).若廣告商要求包裝盒側(cè)面積Scm2最大,試求x應(yīng)取何值?
設(shè)AE=FB=xcm,包裝盒側(cè)面積為Scm2

(I)分析:由正方形硬紙片ABCD的邊長(zhǎng)為60cm,AE=FB=xcm,則EF=
(60-2x)
(60-2x)
cm.
為更好地尋找題目中的等量關(guān)系,將剪掉的陰影部分三角形集中,得到邊長(zhǎng)為EF的正方形,其面積為
(60-2x)2
(60-2x)2
cm2;折起的四個(gè)角上的四個(gè)等腰直角三角形的面積之和為
4x2
4x2
cm2
(Ⅱ)由以上分析,用含x的代數(shù)式表示包裝盒的側(cè)面積S,并求出問(wèn)題的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△OAB是邊長(zhǎng)為2+
3
的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸的正方向上,將△OAB折疊,使點(diǎn)B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長(zhǎng)為x,△OB′E的周長(zhǎng)為C,求C關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)B′E∥y軸時(shí),求點(diǎn)B′和點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,若拋物線y=-2x2+bx+c的對(duì)稱軸是直線B′E,且經(jīng)過(guò)原點(diǎn)O,求b、c的值;
(4)當(dāng)B′在OA上運(yùn)動(dòng)但不與O、A重合時(shí),能否使△EB′F成為直角三角形?若能,請(qǐng)求出點(diǎn)B′的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案